版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
3.
4.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln2
5.
[]A.e-x+C
B.-e-x+C
C.ex+C
D.-ex+C
6.
7.若x→x0時(shí),α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型
8.
9.下列級(jí)數(shù)中發(fā)散的是()
A.
B.
C.
D.
10.
11.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
12.
13.
14.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面15.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.516.A.A.
B.
C.
D.
17.
18.
19.A.A.0
B.
C.
D.∞
20.
二、填空題(20題)21.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.
22.
23.
24.
25.26.27.28.29.
30.
31.
32.
33.
34.
35.
36.
37.38.極限=________。
39.
40.
三、計(jì)算題(20題)41.求微分方程的通解.
42.
43.
44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
45.將f(x)=e-2X展開為x的冪級(jí)數(shù).46.證明:47.求曲線在點(diǎn)(1,3)處的切線方程.
48.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.51.
52.53.
54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則57.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.58.59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.62.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求
63.
64.設(shè)區(qū)域D為:65.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.66.設(shè)F(x)為f(x)的一個(gè)原函數(shù),且f(x)=xlnx,求F(x).67.
68.某廠要生產(chǎn)容積為Vo的圓柱形罐頭盒,問怎樣設(shè)計(jì)才能使所用材料最省?
69.
70.
五、高等數(shù)學(xué)(0題)71.f(z,y)=e-x.sin(x+2y),求
六、解答題(0題)72.
參考答案
1.D解析:
2.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
3.D解析:
4.C
5.B
6.A
7.D
8.C解析:
9.D
10.A
11.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
12.B
13.C解析:
14.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.
15.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
16.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
17.D
18.C
19.A本題考查的知識(shí)點(diǎn)為“有界變量與無窮小量的乘積為無窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問題中的所給條件.
20.A
21.本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.
由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知
為所求.
22.
解析:
23.e
24.25.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.26.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
27.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
28.
29.
30.
31.
32.
33.e34.1
35.63/12
36.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.37.2x+3y.
本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
38.因?yàn)樗髽O限中的x的變化趨勢(shì)是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時(shí),為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
39.2
40.
41.
42.
43.
44.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
45.
46.
47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.49.函數(shù)的定義域?yàn)?/p>
注意
50.
51.
則
52.
53.由一階線性微分方程通解公式有
54.
55.由二重積分物理意義知
56.由等價(jià)無窮小量的定義可知
57.
58.
59.
列表:
說明
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.64.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯(cuò)誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見的錯(cuò)誤,考生務(wù)必要注意.65.所給曲線圍成的圖形如圖8-1所示.66.由題設(shè)可得知本題考查的知識(shí)點(diǎn)為兩個(gè):原函數(shù)的概念和分部積分法.
67.
68.解設(shè)圓柱形罐頭盒的底圓半徑為r,高為h,表面積為S,則
69.
70.
71.f(xy)=e-x.sin(x+2y)∴fx"(zy)=一e-x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作述職報(bào)告3篇
- 二零二五年度綠色環(huán)保廣告字制作與安裝服務(wù)合同3篇
- 2025年度跨行業(yè)員工借調(diào)與資源共享合作協(xié)議3篇
- 2025年度年度勞動(dòng)爭(zhēng)議調(diào)解律師委托協(xié)議終止書3篇
- 2025年度無人機(jī)農(nóng)業(yè)病蟲害防治與智慧農(nóng)業(yè)平臺(tái)合同3篇
- 2025年度農(nóng)莊租賃與農(nóng)業(yè)資源整合合同3篇
- 二零二五年度獸醫(yī)疾病防控中心獸醫(yī)聘用協(xié)議3篇
- 二零二五年度月嫂服務(wù)滿意度評(píng)價(jià)及改進(jìn)合同2篇
- 二零二五年度化學(xué)論文版權(quán)轉(zhuǎn)讓及國(guó)際學(xué)術(shù)交流合同3篇
- 2025年度教育資源共享合作協(xié)議書模板集3篇
- 品質(zhì)異常處理單
- 2019年國(guó)考行測(cè)真題完整版答案解析圖文(地市級(jí))word版
- 市政基礎(chǔ)設(shè)施工程給水排水管道工程實(shí)體質(zhì)量檢查記錄
- 《中華人民共和國(guó)職業(yè)分類大典》電子版
- 施工現(xiàn)場(chǎng)鐵皮圍擋承包合同
- 管理學(xué)案例分析(超全有答案)(已處理)
- ICU病人早期康復(fù)-ppt課件
- 藥品開發(fā)與上量-宿家榮
- 北京海淀區(qū)初一上數(shù)學(xué)期末試題(帶標(biāo)準(zhǔn)答案)_
- 化工原理課程設(shè)計(jì)空氣中丙酮的回收工藝操作
- 廠房施工總結(jié)報(bào)告
評(píng)論
0/150
提交評(píng)論