版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點(diǎn),連接AC、BC,則圖中陰影部分面積是()A. B.C. D.2.如圖,AB是半徑為1的⊙O的直徑,點(diǎn)C在⊙O上,∠CAB=30°,D為劣弧CB的中點(diǎn),點(diǎn)P是直徑AB上一個(gè)動(dòng)點(diǎn),則PC+PD的最小值為()A.1 B.2 C. D.3.已知關(guān)于x的一元二次方程x2+3x﹣2=0,下列說(shuō)法正確的是()A.方程有兩個(gè)相等的實(shí)數(shù)根 B.方程有兩個(gè)不相等的實(shí)數(shù)根C.沒(méi)有實(shí)數(shù)根 D.無(wú)法確定4.若有意義,則x的取值范圍是A.且 B. C. D.5.如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過(guò)A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為()A. B. C. D.6.已知,則銳角的取值范圍是()A. B. C. D.7.若一元二次方程的一個(gè)根為,則其另一根是()A.0 B.1 C. D.28.在平面直角坐標(biāo)系中,將拋物線y=x2的圖象向左平移3個(gè)單位、再向下平移2個(gè)單位所得的拋物線的函數(shù)表達(dá)式為()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+29.如圖,D是等邊△ABC邊AD上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC、BC上,則CE:CF=()A. B. C. D.10.如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點(diǎn)E,連接OD、OC、BE、AE,BE與OC相交于點(diǎn)P,AE與OD相交于點(diǎn)Q,已知AD=4,BC=9,以下結(jié)論:①⊙O的半徑為,②OD∥BE,③PB=,④tan∠CEP=其中正確結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(每小題3分,共24分)11.如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),⊙B的圓心為B,半徑是1,點(diǎn)P是直線AC上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙B的切線,切點(diǎn)是Q,則切線長(zhǎng)PQ的最小值是__.12.如圖,邊長(zhǎng)為2的正方形ABCD中心與半徑為2的⊙O的圓心重合,E、F分別是AD、BA的延長(zhǎng)與⊙O的交點(diǎn),則圖中陰影部分的面積是______.(結(jié)果保留)13.墻壁CD上D處有一盞燈(如圖),小明站在A處測(cè)得他的影長(zhǎng)與身長(zhǎng)相等,都為1.6m,他向墻壁走1m到B處時(shí)發(fā)現(xiàn)影子剛好落在A點(diǎn),則燈泡與地面的距離CD=____.14.如圖,某水平地面上建筑物的高度為AB,在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CD和EF,兩標(biāo)桿相隔52米,并且建筑物AB、標(biāo)桿CD和EF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G處,在G處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線上;從標(biāo)桿FE后退4米到點(diǎn)H處,在H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線上,則建筑物的高是__________米.15.如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD=______度.16.已知△ABC中,∠BAC=90°,用尺規(guī)過(guò)點(diǎn)A作一條直線,使其將△ABC分成兩個(gè)相似的三角形,其作法不正確的是_______.(填序號(hào))17.如圖,已知點(diǎn)A、B分別在反比例函數(shù),的圖象上,且,則的值為_(kāi)_____.18.拋物線的部分圖象如圖所示,對(duì)稱軸是直線,則關(guān)于的一元二次方程的解為_(kāi)___.三、解答題(共66分)19.(10分)已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過(guò)點(diǎn)A(不經(jīng)過(guò)點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,連接BD,CD.(1)如圖1,①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;②直接寫(xiě)出∠BDC的度數(shù)(用含α的式子表示)為;(2)如圖2,當(dāng)α=60°時(shí),過(guò)點(diǎn)D作BD的垂線與直線l交于點(diǎn)E,求證:AE=BD;(3)如圖3,當(dāng)α=90°時(shí),記直線l與CD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,在什么情況下線段BF的長(zhǎng)取得最大值?若AC=2a,試寫(xiě)出此時(shí)BF的值.20.(6分)計(jì)算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.21.(6分)如圖,正方形、等腰的頂點(diǎn)在對(duì)角線上(點(diǎn)與、不重合),與交于,延長(zhǎng)線與交于點(diǎn),連接.(1)求證:.(2)求證:(3)若,求的值.22.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解:求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過(guò)因式分解把它轉(zhuǎn)化為,解方程和,可得方程的解.利用上述材料給你的啟示,解下列方程;(1);(2).23.(8分)某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機(jī)抽取本校40名學(xué)生進(jìn)行問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖:根據(jù)以上信息解答下列問(wèn)題:(1)課外體育鍛煉情況統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為;“經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項(xiàng)目”中,喜歡足球的人數(shù)有人,補(bǔ)全條形統(tǒng)計(jì)圖.(2)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項(xiàng)目是乒乓球的人數(shù)有多少人?(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項(xiàng)目中任選兩個(gè)項(xiàng)目成立興趣小組,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個(gè)項(xiàng)目的概率.24.(8分)為測(cè)量觀光塔高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請(qǐng)根據(jù)以上觀測(cè)數(shù)據(jù)求觀光塔的高.25.(10分)如圖,拋物線y=ax2﹣x+c與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過(guò)點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E,點(diǎn)P在BC下方的拋物線上運(yùn)動(dòng).(1)求該拋物線的解析式;(2)當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),求點(diǎn)P的坐標(biāo);(3)當(dāng)四邊形ACPB的面積最大時(shí),求點(diǎn)P的坐標(biāo)并求出最大值.26.(10分)某批發(fā)商以50元/千克的成本價(jià)購(gòu)入了某產(chǎn)品800千克,他隨時(shí)都能一次性賣出這種產(chǎn)品,但考慮到在不同的日期市場(chǎng)售價(jià)都不一樣,為了能把握好最恰當(dāng)?shù)匿N售時(shí)機(jī),該批發(fā)商查閱了上年度同期的經(jīng)銷數(shù)據(jù),發(fā)現(xiàn):①如果將這批產(chǎn)品保存5天時(shí)賣出,銷售價(jià)為80元;②如果將這批產(chǎn)品保存10天時(shí)賣出,銷售價(jià)為90元;③該產(chǎn)品的銷售價(jià)y(元/千克)與保存時(shí)間x(天)之間是一次函數(shù)關(guān)系;④這種產(chǎn)品平均每天將損耗10千克,且最多保存15天;⑤每天保存產(chǎn)品的費(fèi)用為100元.根據(jù)上述信息,請(qǐng)你幫該批發(fā)商確定在哪一天一次性賣出這批產(chǎn)品能獲取最大利潤(rùn),并求出這個(gè)最大利潤(rùn).
參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進(jìn)行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.2、C【分析】作D點(diǎn)關(guān)于AB的對(duì)稱點(diǎn)E,連接OC.OE、CE,CE交AB于P',如圖,利用對(duì)稱的性質(zhì)得到P'E=P'D,,再根據(jù)兩點(diǎn)之間線段最短判斷點(diǎn)P點(diǎn)在P'時(shí),PC+PD的值最小,接著根據(jù)圓周角定理得到∠BOC=60°,∠BOE=30°,然后通過(guò)證明△COE為等腰直角三角形得到CE的長(zhǎng)即可.【詳解】作D點(diǎn)關(guān)于AB的對(duì)稱點(diǎn)E,連接OC、OE、CE,CE交AB于P',如圖,∵點(diǎn)D與點(diǎn)E關(guān)于AB對(duì)稱,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴點(diǎn)P點(diǎn)在P'時(shí),PC+PD的值最小,最小值為CE的長(zhǎng)度.∵∠BOC=2∠CAB=2×30°=60°,而D為的中點(diǎn),∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE為等腰直角三角形,∴CEOC,∴PC+PD的最小值為.故選:C.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.3、B【分析】根據(jù)一元二次方程的構(gòu)成找出其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)以及常數(shù)項(xiàng),再根據(jù)根的判別式△=17>0,即可得出方程有兩個(gè)不相等的實(shí)數(shù)根,此題得解.【詳解】解:在一元二次方程x2+3x﹣2=0中,二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)為﹣2,∵△=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有兩個(gè)不相等的實(shí)數(shù)根.故選:B.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)?=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)?<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根.4、A【分析】根據(jù)二次根式有意義的條件和分式有意義的條件即可求出答案.【詳解】由題意可知:,解得:且,故選A.【點(diǎn)睛】本題考查了分式有意義的條件、二次根式有意義的條件,熟練掌握分式的分母不為0、二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)是解題的關(guān)鍵.5、D【詳解】如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.6、B【分析】根據(jù)銳角余弦函數(shù)值在0°到90°中,隨角度的增大而減小進(jìn)行對(duì)比即可;【詳解】銳角余弦函數(shù)值隨角度的增大而減小,∵cos30°=,cos45°=,∴若銳角的余弦值為,且則30°<α<45°;故選B.【點(diǎn)睛】本題主要考查了銳角三角函數(shù)的增減性,掌握銳角三角函數(shù)的增減性是解題的關(guān)鍵.7、C【分析】把代入方程求出的值,再解方程即可.【詳解】∵一元二次方程的一個(gè)根為∴解得∴原方程為解得故選C【點(diǎn)睛】本題考查一元二次方程的解,把方程的解代入方程即可求出參數(shù)的值.8、C【解析】先確定拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),再根據(jù)點(diǎn)平移的規(guī)律得到點(diǎn)(0,0)向左平移3個(gè)單位、再向下平移2個(gè)單位所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為-3,-2,然后利用頂點(diǎn)式寫(xiě)出新拋物線解析式即可.【詳解】拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),把點(diǎn)(0,0)向左平移3個(gè)單位、再向下平移2個(gè)單位所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為-3,-2,所以平移后的拋物線解析式為y=(x+3)2-2.故選:C.【點(diǎn)睛】考查二次函數(shù)的平移,掌握二次函數(shù)平移的規(guī)律是解題的關(guān)鍵.9、B【詳解】解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似可得△AED∽△BDF所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點(diǎn)睛】本題考查相似三角形的判定及性質(zhì).10、C【解析】試題解析:作DK⊥BC于K,連接OE.∵AD、BC是切線,∴∠DAB=∠ABK=∠DKB=90°,∴四邊形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切線,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半徑為1.故①錯(cuò)誤,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正確.在RT△OBC中,PB===,故③正確,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正確,∴②③④正確,故選C.二、填空題(每小題3分,共24分)11、【分析】先根據(jù)解析式求出點(diǎn)A、B、C的坐標(biāo),求出直線AC的解析式,設(shè)點(diǎn)P的坐標(biāo),根據(jù)過(guò)點(diǎn)P作⊙B的切線,切點(diǎn)是Q得到PQ的函數(shù)關(guān)系式,求出最小值即可.【詳解】令中y=0,得x1=-,x2=5,∴直線AC的解析式為,設(shè)P(x,),∵過(guò)點(diǎn)P作⊙B的切線,切點(diǎn)是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案為:,【點(diǎn)睛】此題考查二次函數(shù)最小值的實(shí)際應(yīng)用,求動(dòng)線段的最小值,需構(gòu)建關(guān)于此線段的函數(shù)解析式,利用二次函數(shù)頂點(diǎn)坐標(biāo)公式求最值,此題找到線段PQ、BQ、PB之間的關(guān)系式是解題的關(guān)鍵.12、-1【分析】延長(zhǎng)DC,CB交⊙O于M,N,根據(jù)圓和正方形的面積公式即可得到結(jié)論.【詳解】解:延長(zhǎng)DC,CB交⊙O于M,N,則圖中陰影部分的面積=×(S圓O?S正方形ABCD)=×(4π?4)=π?1,故答案為π?1.【點(diǎn)睛】本題考查了圓中陰影部分面積的計(jì)算,正方形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.13、m【分析】利用相似三角形的相似比,列出方程組,通過(guò)解方程組求出燈泡與地面的距離即可.【詳解】如圖:根據(jù)題意得:BG=AF=AE=1.6m,AB=1m,∵BG∥AF∥CD,∴△EAF∽△ECD,△ABG∽△ACD,∴AE:EC=AF:CD,AB:AC=BG:CD,設(shè)BC=xm,CD=ym,則CE=(x+2.6)m,AC=(x+1)m,∴,解得:x=,y=,∴CD=m.∴燈泡與地面的距離為米,故答案為m.14、54【解析】設(shè)建筑物的高為x米,根據(jù)題意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.15、80【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵BC是⊙O的切線,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圓周角定理得,∠BOD=2∠A=80°.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.16、③【分析】根據(jù)過(guò)直線外一點(diǎn)作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;即可作出判斷.【詳解】①、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點(diǎn)D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進(jìn)而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;②、以點(diǎn)A為圓心,略小于AB的長(zhǎng)為半徑,畫(huà)弧,交線段BC兩點(diǎn),再分別以這兩點(diǎn)為圓心,大于兩交點(diǎn)間的距離為半徑畫(huà)弧,兩弧相交于一點(diǎn),過(guò)這一點(diǎn)與A點(diǎn)作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形是彼此相似的;③、以點(diǎn)B為圓心BA的長(zhǎng)為半徑畫(huà)弧,交BC于點(diǎn)E,再以E點(diǎn)為圓心,AB的長(zhǎng)為半徑畫(huà)弧,在BC的另一側(cè)交前弧于一點(diǎn),過(guò)這一點(diǎn)及A點(diǎn)作直線,該直線不一定是BE的垂線;從而就不能保證兩個(gè)小三角形相似;④、以AB為直徑作圓,該圓交BC于點(diǎn)D,根據(jù)圓周角定理,過(guò)AD兩點(diǎn)作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;故答案為:③.【點(diǎn)睛】此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.17、【分析】作軸于C,軸于D,如圖,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和三角形面積公式得到,,再證明∽,然后利用相似三角形的性質(zhì)得到的值,即可得出.【詳解】解:作軸于C,軸于D,如圖,點(diǎn)A、B分別在反比例函數(shù),的圖象上,,,,,,∽,,.故答案為.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)為常數(shù),的圖象是雙曲線,圖象上的點(diǎn)的橫縱坐標(biāo)的積是定值k,即.18、【分析】根據(jù)二次函數(shù)的性質(zhì)和函數(shù)的圖象,可以得到該函數(shù)圖象與軸的另一個(gè)交點(diǎn),從而可以得到一元二次方程的解,本題得以解決.【詳解】由圖象可得,
拋物線與x軸的一個(gè)交點(diǎn)為(1,0),對(duì)稱軸是直線,
則拋物線與軸的另一個(gè)交點(diǎn)為(-3,0),
即當(dāng)時(shí),,此時(shí)方程的解是,
故答案為:.【點(diǎn)睛】本題考查了拋物線與軸的交點(diǎn)、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.三、解答題(共66分)19、(1)①詳見(jiàn)解析;②α;(2)詳見(jiàn)解析;(3)當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng),(+)a【分析】(1)①由線段垂直平分線的性質(zhì)可得AD=AC=AB,即可證點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;②由等腰三角形的性質(zhì)可得∠BAC=2∠BDC,可求∠BDC的度數(shù);(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據(jù)“SAS”可證△BCD≌△ACE,可得AE=BD;(3)取AC的中點(diǎn)O,連接OB,OF,BF,由三角形的三邊關(guān)系可得,當(dāng)點(diǎn)O,點(diǎn)B,點(diǎn)F三點(diǎn)共線時(shí),BF最長(zhǎng),根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求,,即可求得BF【詳解】(1)①連接AD,如圖1.∵點(diǎn)C與點(diǎn)D關(guān)于直線l對(duì)稱,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴點(diǎn)B,C,D在以A為圓心,AB為半徑的圓上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案為:α.(2連接CE,如圖2.∵∠BAC=60°,AB=AC,∴△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,∴DE=CE,且∠CDE=60°∴△CDE是等邊三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如圖3,取AC的中點(diǎn)O,連接OB,OF,BF,,F(xiàn)是以AC為直徑的圓上一點(diǎn),設(shè)AC中點(diǎn)為O,∵在△BOF中,BO+OF≥BF,當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng);如圖,過(guò)點(diǎn)O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵點(diǎn)O是AC中點(diǎn),AC=2a,∴,∴,∴BH=3a,∴,∵點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,∴∠AFC=90°,∵點(diǎn)O是AC中點(diǎn),∴,∴,∴當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng);最大值為(+)a.【點(diǎn)睛】本題是三角形綜合題,考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理,三角形的三邊關(guān)系,靈活運(yùn)用相關(guān)的性質(zhì)定理、綜合運(yùn)用知識(shí)是解題的關(guān)鍵.20、(1)-2(2)【分析】(1)根據(jù)特殊角的三角函數(shù)值即可求解;(2)根據(jù)負(fù)指數(shù)冪、零指數(shù)冪及特殊角的三角函數(shù)值即可求解.【詳解】(1)2sin30°+cos45°tan60°=2×+-×=1+-3=-2(2)()0()-2tan230=1-4+()2=-3+=.【點(diǎn)睛】此題主要考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是熟知特殊角的三角函數(shù)值.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)證出∠ABP=∠CBQ,由SAS證明△ABP≌△CBQ可得結(jié)論;
(2)根據(jù)正方形的性質(zhì)和全等三角形的性質(zhì)得到,∠APF=∠ABP,可證明△APF∽△ABP,再根據(jù)相似三角形的性質(zhì)即可求解;
(3)根據(jù)全等三角形的性質(zhì)得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根據(jù)三角函數(shù)和已知條件得到,由(2)可得,等量代換可得∠CBQ=∠CPQ即可求解.【詳解】(1)∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴;(2)∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,;(3)由(1)得,,,∴,由(2),∴,∵,∴,在中,,∴【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度.22、(1);(2)x=1【分析】(1)因式分解多項(xiàng)式,然后得結(jié)論;(2)根據(jù)題目中的方程,兩邊同時(shí)平方轉(zhuǎn)化為有理方程,然后解方程即可,注意,最后要檢驗(yàn),所得的根是否使得原無(wú)理方程有意義.【詳解】解:(1)∵,∴,∴,∴,,,解得:;(2)∵,∴,∴,∴,解得:x1=-1,x2=1,經(jīng)檢驗(yàn),x=1是原無(wú)理方程的根,x=-1不是原無(wú)理方程的根,即方程,的解是x=1.【點(diǎn)睛】本題考查解無(wú)理方程、因式分解法,解答本題的關(guān)鍵是明確解方程的方法,注意無(wú)理方程最后要檢驗(yàn).23、(1)144°,1;(2)180;(3).【解析】試題分析:(1)用“經(jīng)常參加”所占的百分比乘以360°計(jì)算得到“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù);先求出“經(jīng)常參加”的人數(shù),然后減去其它各組人數(shù)得出喜歡足球的人數(shù);進(jìn)而補(bǔ)全條形圖;(2)用總?cè)藬?shù)乘以喜歡籃球的學(xué)生所占的百分比計(jì)算即可得解;(3)先利用樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),找出選中的兩個(gè)項(xiàng)目恰好是“乒乓球”、“籃球”所占結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“經(jīng)常參加”的人數(shù)為:40×40%=16人,喜歡足的學(xué)生人數(shù)為:16﹣6﹣4﹣3﹣2=1人;補(bǔ)全統(tǒng)計(jì)圖如圖所示:故答案為:144°,1;(2)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項(xiàng)目是乒乓球的人數(shù)約為:1200×=180人;(3)設(shè)A代表“乒乓球”、B代表“籃球”、C代表“足球”、D代表“羽毛球”,畫(huà)樹(shù)狀圖如下:共有12種等可能的結(jié)果數(shù),其中選中的兩個(gè)項(xiàng)目恰好是“乒乓球”、“籃球”的情況占2種,所以選中“乒乓球”、“籃球”這兩個(gè)項(xiàng)目的概率是=.點(diǎn)睛:本題考查了列表法與樹(shù)狀圖法:通過(guò)列表法或樹(shù)狀圖法展示所有可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了樣本估計(jì)總體、扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.24、135【分析】根據(jù)“爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°”可以求出AD的長(zhǎng),然后根據(jù)“在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°”求出CD的長(zhǎng)即可.【詳解】∵爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°,∴∠ADB=30°,在Rt△ABD中,AD=,∴AD=45m,∵在一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,∴在Rt△ACD中,CD=AD?tan6
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保安部個(gè)人工作總結(jié)
- 中學(xué)競(jìng)選班長(zhǎng)演講稿
- 中外名著《培根隨筆》讀后感
- 模板幼師課件教學(xué)課件
- 松鼠兒童課件教學(xué)課件
- 機(jī)動(dòng)車檢驗(yàn) 零氣源技術(shù)要求及測(cè)試方法 征求意見(jiàn)稿
- 綿綿土課件教學(xué)課件
- 2024浙江杭州市上城區(qū)望江街道社區(qū)衛(wèi)生服務(wù)中心編外招聘1人筆試備考題庫(kù)及答案解析
- 2025年高考語(yǔ)文復(fù)習(xí)知識(shí)清單第2章文學(xué)類文本閱讀(一)小說(shuō)專題06探究主旨、標(biāo)題、作者意圖(學(xué)生版+解析)
- 標(biāo)養(yǎng)室和試件管理制度 附表-標(biāo)準(zhǔn)養(yǎng)護(hù)室溫度、相對(duì)濕度測(cè)量記錄表
- 某金屬公司套期保值案例
- ??低曇曨l車位誘導(dǎo)與反向?qū)ぼ囅到y(tǒng)與解決與方案
- 汽車維修工時(shí)定額單價(jià)標(biāo)準(zhǔn)
- 農(nóng)村人居環(huán)境整治干凈整潔村驗(yàn)收表
- 公文管理中的錯(cuò)誤
- 2020年城市燃?xì)夥?wù)企業(yè)組織結(jié)構(gòu)及部門(mén)職責(zé)
- JJG 2023-1989壓力計(jì)量器具
- 《計(jì)算機(jī)操作系統(tǒng)》湯小丹
- 自制溫度計(jì)課件
- 中藥飲片管理規(guī)范
- 全產(chǎn)業(yè)鏈運(yùn)營(yíng)模式課件
評(píng)論
0/150
提交評(píng)論