




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
譯文學(xué)院 電氣信息工程學(xué)院 專業(yè) 計(jì)算機(jī)科學(xué)與技術(shù) 學(xué)生姓名 XXX 班級(jí)學(xué)號(hào) 1045532111 指導(dǎo)教師 XXX 二零一四年六月外文文獻(xiàn)翻譯外文文獻(xiàn)翻譯PAGEPAGE15DigitalImageProcessingandEdgeDetectionTurgayCelikHasanDemire1,HuseyinOzkaramanli,MustafaUygurogluLDigitalImageProcessingInterestindigitalimageprocessingmethodsstemsfromtwoprincipalapplicantionareas:improvementofpictorialinformationforhumaninterpretation;andprocessingofimagedataforstorage,transmission,andrepresentationforau?tenuousmachineperception.Animagemaybedefinedasatwo-dimensionalfunction,Rx,y),wherexandyarespatial(planc)coordinates,andtheamplitudeoffatanypairofcoordinates(x,y)iscalledtheintensityorgrayleveloftheimageatthatpoint?Whenx,y,andtheamplitudevaluesoffarcallfinitc,discretequantities,wccalltheimageadigitalimage?Thefieldofdigitalimageprocessingreferstoprocessingdigitalimagesbymeansofadigitalcompute匚Notethatadigitalimageisconposedofafinitenumberofelements,eachofwhichhasaparticularlocationandvalue.Theseelementsarereferredtoaspictureelements,imageelements,peels,aixipixels?Pixelisthetermmostwidelyusedtodenotetheelementsofadigitalimage?Visionisthemostadvancedofoursenses,soitisnotsurprisingthatimagesplaythesinglemostimportantroleinhumanperception?However,unlikehumans,whoarelimitedlothevisualbandoftheelectromagnetic(EM)spec-trump,imagingmachinescoveralmosttheentireEMspectrunirangingfromgammatoradiowaves.Theycanoperateonimagesgeneratedbysourcesthathumansarenotaccustomedtoassociatingwithimages.Theseincludeultra-sound,electronmicroscopy,andcomputer-generated?Thus,digitalimageprocessingencompassesawideandvariedfieldofapplications?Thereisnogeneralagreementamongauthorsregardingwhereimageprocessingstopsandotherrelatedareas,suchasimageanalysisandcomputervi-son,start.Sometimesadistinctionismadebydefiningimageprocessingasadisciplineinwhichboththeinputandoutputofaprocessareimages?Webelievethistobealimitingandsomewhatartificialboundary.Forexample,uixlerthisdefinition,eventhetrivialtaskofcomputingtheaverageintensityofanimage(whichyieldsasinglenumber)wouldnotbeconsideredanimageprocessingoperationOntheotherhand^therearefieldssuchascomputervisionwhoseultimategoalistousecomputerstoemulatehumanvision,includinglearningandbeingabletomakeinferencesandtakeactionsbasedonvisualinputs?Thisareaitselfisabranchofartificialintelligence(Al)whoseobjectiveistoemulatehuman?ThefieldofAlisinitsearlieststagesofinfancyintermsofdevelopment,withprogressleavingbeenmuchslowerthanoriginallyanticipated?Theareaofimageanalysis(alsocalledimageunderstanding)isinbc?teenimageprocessingandcomputervision?Therearcnoclcar-cutboundariesinthecontinuumfromimageprocessingatoneendtocomputervisionattheother.However,oneusefulparadigmistoconsiderthreetypesofcomputerizedprocessesinthiscontinuum:low-,mid-,andhigh?levelprocesses.Low-levelprocessesinvolveprimitiveopera?tonssuchasimagepreprocessingtoreducenoise,contrastenhancement,andimagesharpening?Alow-levelprocessischaracterizedbythefeetthatbothitsinputsandoutputsareimages.Mid-levelprocessingonimagesinvolvestaskssuchassegmentation(partitioninganimageintoregionsorobjects),descriptionofthoseobjectstoreducethemtoaformsuitableforcomputerprocessing,andclassification(recognition)ofindividualobjects.Amidlevelprocessischaracterizedbythefactthatitsinputsgenerallyareimages,butitsoutputsareattributesextractedfromthoseimages(e.g.,edges,contours,andtheidentityofindividualobjects).Finally,higher-levelprocessinginvolves"makingsense"ofanensembleofrecognizedobjects,asinimageanalysis,and,attheforendofthecontinuum,performingthecognitivefunctionsnormallyassociatedwithvision.Basedontheprecedingcomments,wcseethatalogicalplaceofoverlapbetweenprocessingandimageanalysisistheareaofrecognitionofindividualregionsorobjectsinanimage?Thus,whatwecallinthisbookdigitalimageprocessingencompassesprocesseswhoseinputsand9outputsareimagesand,inadditioneneompassesprocessesthatextractattributesfromimages,up9toandincludingtherecognitionofindividualobjects.Asasimpleillustrationtoclarifytheseconcepts.considertheareaofautomatedanalysisoftext.Theprocessesofacquiringanimageoftheareacontainingthetext,preprocessingthatimage,extracting(segmenting)theindividualcharacters,describingthecharaclersinaformsuitableforcomputerprocessing,andrecognizingthoseindividualcharactersareinthescopeofwhatwecalldigitalimageprocessinginthisbook.Makingsenseofthecontentofthepagemaybeviewedasbeinginthedomainofimageanalysisandevencomputervisioadepeixiingonthelevelofcomplexityimpliedbythestatement"makingsense."Aswillbecomeevidentshortly,digitalimageprocessing,aswehavedefinedit,isusedsuccessfullyinabroadrangeofareasofexceptionalsocialandeconomicvalue.Theareasofapplicationofdigitalimageprocessingarcsovariedthatsomeformoforganizationisdesirableinattemptingtocapturethebreadthofthisfield.Oneofthesimplestwaystodevelopabasicunderstandingoftheextentofimageprocessingapplicationsistocategorizeimagesaccordingtotheirsoiucc(c.g,visual.X-ray,andsoon).TheprincipalenergysourceforimagesinusetodayistheelectromagneticenergyspectrumOtherimportantsourcesofenergyincludeacoustic,ultrasonic,andelectronic(intheformofelectronbeamsusedinelectronmicroscopy) Syntheticimages,usedformodelingandvisualization^aregeneratedbycompute匚Inthissectionwediscussbrieflyhowimagesaregeneratedinthesevariouscategoriesandtheareasinwhichtheyareapplied?ImagesbasedonradiationfromtheEMspectrumarethemostfamiliar,especiallyimagesintheX-rayandvisualbandsofthespectrumElectromagneticewavescanbeconceptualizedpropagatingsinusoidalwavesofvaryingwavelengtlis,ortheycanbethoughtofasastreamofmasslessparticles,eachtravelinginawavelikepatternandmovingatthespeedoflightEachmasslessparticlecontainsacertainamount(orbundle)ofenergy?Eachbundleofenergyiscalledaphoton.【fspectralbandsarcgroupedaccordingtoenergyperphoton,wcobtainthespectrumshowninfig.below,rangingfromgammarays(highestenergy)atoneendtoradiowaves(lowestenergy)attheother.ThebandsarcshownshadedtoconveythefactthatbandsoftheEMspectrumarcnotdistinctbutrathertransitionsmoothlyfi*omonetotheother.Imageacquisitionisthefirstprocess?NotethatacquisitioncouldbeassimpleasbeinggivenanimagethatisalreadyindigitalformGenerally,theimageacquisitionstageinvolvespreprocessing,suchasscaling?Imageenhancementisamongthesimplestandmostappealingareasofdigitalimageprocessing.Basically,theideabehindenhancementtechniquesistobringoutdetailthatisobscured,orsimplytohighlightcertainfeaturesofinterestinanimage.Afamiliarexampleofenhancementiswhenweincreasethecontrastofanimagebecause"itlooksbetter.^Itisimportanttokeepinmindthatenhancementisaverysubjectiveareaofimageprocessing.Imagerestorationisanareathatalsodealswithimprovingtheappearanceofanimage?However,unlikeenhancement,whichissubjective,imagerestorationisobjective,inthesensethatrestorationtechniquestendtobebasedonmathematicalorprobabilisticmodelsofimagedegradation.Enhanccincnt,ontheotherhand,isbasedonhumansubjectivepreferencesregardingwhatconstitutesa“good"enhanceentresultColorimageprocessingisanareathatliasbeengaininginimportaneebecauseofsignificantincreaseintheuseofdigitalimagesovertheInternet.Itcoversanumberoffuixiamentalconceptsincolormodelsandbasiccolorprocessinginadigitaldomain?Colorisusedalsoinlaterchaptersasthebasislorextractingfeaturesofinterestinanimage.Waveletsarethefoundationforrepresentingimagesinvariousdegreesofresolution.Inparticular,thismaterialisusedinthisbookforimagedatacompressionandforpyramidalrepresentation,inwhichimagesaresubdividedsuccessivelyintosmallerregions.Compression,asthenameimplies,dealswithtechniquesforreducingthestoragerequiredsavinganimage,orlhebandwidthrequiredtransmittingit.Althoughstoragetechnologyhasimprovedsignificantlyoverthepastdecade,thesamecannotbesaidfortransmissioncapacity?ThisistrueparticularlyinusesoftheInternet,whicharecharacterizedbysignificantpictorialcontent.Imagecompressionisfemiliar(perhapsinadvertently)tomostusersofcomputersintheformofimagefileextensions,suchasthejpgfileextensionusedintheJPEG(JointPhotographicExpertsGroup)imagecomprcssionstandard?Moipliologicalprocessingdealswithtoolsforextractingimagecomponentsthatarcusefulintherepresentationanddescriptionofsliape.Thematerialinthischapterbeginsatransitionfromprocessesthatoutputimagestoprocessesthatoutputimageattributes.Segmentationprocedurespartitionanimageintoitsconstituentpartsorobjects.Ingeneral,autonomoussegmentationisoneofthemostdifficulttasksindigitalimageprocessing.Aruggedsegmentationprocedurebringstheprocessalongwaytowardsuccessfulsolutionofimagingproblemsthatrequireobjectstobeidentifiedindividually.Ontheotherhand,weakorerraticsegmentationalgorithmsalmostalwaysguaranteeeventual?Ingeneral,themoreaccuratethesegmentation,themorelikelyrecognitionistosucceed?Representationanddescriptionalmostahvaysfollowtheoutputofasegmentationstage,whichusuallyisrawpixeldata,constitutingeitherthebound-rayofaregion(i.e.,thesetofpixelsseparatingoneimageregionfi*omanother)orallthepointsintheregionitselfIneithercase,convertingthedatatoaformsuitableforconiputcrprocessingisnecessary.Thefirstdecisionthatmustbemadeiswhetherthedatashouldberepresentedasaboundaryorasacompleteregion.Boundaryrepresentationisappropriatewhenthefocusisonexternalshapecharacteristics,suchascornersandinflections ?Regionalrepresentationisappropriatewhenthefocusisoninternalproperties,suchastextureorskeletalshape?Insomeapplications,theserepresentationscomplementeachother.Choosingarepresentationisonlypartofthesolutionfortrans-formingrawdataintoaformsuitableforsubsequentcomputerprocessing.Amethodmustalsobespecifiedfordescribingthedatasothatfeaturesofinterestare?Description,alsocalledfeatureselection,dealswithextractingattributesthatresultinsomequantitativeinformationofinterestorarebasicfordifferentiatingoneclassofobjectsfromanother.Recognitionistheprocessthatassignsalabel(e.g?,"vehicle')toanobjectbasedonitsdescriptors.Asdetailedbefore,weconcludeourcoverageofdigitalimageprocessingwiththedevelopmentofmethodsforrecognitionofindividualobjects?SofarwchavesaidnothingabouttheneedforpriorknowledgeorabouttheinteractionbchvccntheknowledgebaseandtheprocessingmodulesinFig2
Knowledgeaboutaproblemdomainiscodedintoanimageprocessingsystemintheidrmofaknowledgedatabase?Thisknowledgemaybeasslim-pleaasdetailingregionsofanimagewheretheinformationofinterestisknowntobelocated,thuslimitingthesearchthathastobeconductedinseekingthatinformiition.Theknowledgebasealsocanbequitecomplex,suchasaninterrelatedlistofallmajorpossibledefectsinamaterialsinspectionproblemoranimagedatabasecontaininghigh--resolutionsatelliteimagesofaregionincon?lectionwithchange-detectionapplications?Inadditiontoguidingtheoperationofeachprocessingmodule,theknowledgebasealsocontrolstheinteractionbehveenmodules.ThisdistinctionismadeinFig2abovebytheuseofdouble-headedarrowsbetweentheprocessingmodulesandtheknowledgebase,asop-posedtosingle-headedarrowslinkingtheprocessingmodules.2.EdgedetectionTheimageedgeisoneofimagemostbasiccharacteristics,ofteniscarryingimagemajorityofinfbrmationsoButtheedgeexistsintheimageirregularstructureandinnotthesteadyphenomenon,alsonamelyexistsinthesignalpointofdiscontinuityplace,thesespotshavegiventheimageoutlincposition,theseoutlinesarcfrequentlywewhentheimageryprocessingneedstheextremelyimportantsomerepresentativecondition,thisneedsustoexamineandtowithdrawitsedgetoanimage 。Buttheedgeexaminationalgorithmisintheimageryprocessingquestiononeofchssicaltechnicaldiflicultproblems,itssolutioncaniesonthehighlevelregardingusthecharacteristicdescription,therecognitionandtheunderstandingandsoonhasthesignificantinfluence;Alsobecausetheedgeexaminationallhasinmanyaspectstheextremelyimportantusevalue,thereforehowthepeoplearedevotingcontinuouslyinstudyandsolvelhestructuretoleavehavethegoodnatureandthegoodeilectedgeexaminationoperator。Intheusualsituation,wemaythesignalinsingularpointandthepointofdiscontinuitythoughtisintheimageperipheralpoint,itsnearbygradationchangesituationmayreflectfromitsneighboringpictureelementgradationdistributiongradientoEdgedctcctionisaterminologyinimageprocessingandcomputervision,particularlyintheareasoffeaturedetectionandfeatureextraction,torefertoalgorithmswhichaimatidentifyingpointsinadigitalimageatwhichtheimagebrightnesscliangcssharplyormoreformallyhasdiscontinuities.Althoughpointandlinedctcctioncertainlyarcinportantinanydiscussiononsegmentation,detectionisbyfarthemostcommonapproachfordetectingmeaningfuldiscountiesingraylevel.Theimagemajoritymaininformational!existsintheimageedge,themainperformancefortheimagepartialctoacteristicdiscontinuityisintheimagethegradationcliangequitefierceplace,alsoisthesignalwhichweusuallysaidhasthestrangechangeplace。Thestrangesignalthegradationchangewhichmovestowardsalongtheedgeisfierce,usuallywedividetheedgeforthestepsliapeandtheroofshapetwokindoftypes(asshowninFigurel-l).Inthestepedgetwosidegreylevelshavetheobviouschange;Buttheroofshapeedgeislocatedthegradationincreaseandthereducedintersectionpoint.Mayportraytheperipheralpointinmathematicsusingthegradationderivativethecliange,tothestepedge,theroofshapeedgeasksitsstep,thesecondtimederivative。Toanedge,hasthepossibilitysimultaneouslytohavethestepandthelineedgecharacteristicForexampleonasurface,cliangcsfromaplanetothenormaldirectiondifferentanotherplanecanproducethestepedge;Ifthissurlacchastheedgesandcornerswhichtheregularreflectioncharacteristicalsotwoplanesformquitetobesmooth,thenworksaswhenedgesandcornerssmoothsurfacenormalafterminorsurfacereflectionangle,asaresultoftheregularreflectioncomponent,canproducethebrightlightstripontheedgesaiuicornerssmoothsurface,suchedgelookedlikehaslikelysuperimposedalineedgeinthestepedge Becauseedgepossibleandinsceneobjectimportantcharacteristiccorrespondence,thereforeitistheveryimportantimagecharacteristicoForinstance,anobjectoutlineusuallyproducesthestepedge,becausetheobjectimageintensityisdifferentwiththebackgrouixiimageintensityoWeknewthat,theedgeexaminationessenceisusessomealgorithmtowithdrawintheimagetheobjectandthebackgroundjunctiondemarcationline.Wedefinetheedgefortheimageinthegradationoccurtherapidchangeregionboundary.Theimagegradationchangesituationmayuse什imagegradationdistributionthegradienttoreflect,thereforewemayusethepartialimagedifferentialtechnologytoobtaintheedgeexaminationopcrator.Theedgeexaminationalgorithmhasthefollowingfoursteps:Filter:Theedgeexaminationalgorithmmainlyisbasedonanimageintensitystepandthesecondtimederivative,butthederivativecomputationisverysensitivetothenoise,therefbremustusethefiltertoinproveandthenoiserelatededgedetectorperfbrnianee.Needstopointoutthat,themajorityfilterhaveakocausedtheedgeintensitylosswhileiK)isereduction,therefore,strengthenstheedgeandbetweenthenoisereductionneedscompromised.Enhancement:Strengthenstheedgethefoundationisdeterminestheimageeachneighborhoodintensitythechangevalue.Theenhancementalgorithmmay(orpartkil)theintensityvaluehastheneighborhoodtheremarkablechangespottorevealsuddenly.Theedgestrengthensisgenerallycompletesthroughthecomputationgradientpeak-to-peakvalue.Pl-1ProcessingresultExamination:Hasmanypointgradientpeak-tpeakvalueintheimagequitetobebigbuttheseinthespecificapplicationdomainnotallistheedge,theretoreshouldusesomemethodtodeterminewhichselectistheperipheralpoints.Thesimpleedgeexaminationcriterionisthegradientpcak-to-pcakvaluethresholdvaluecriterion?Localization:Ifsomeapplicationsituationrequestdefiniteedgeposition,thentheedgepositionmaycomeuptheestimateinthesub-pictureelementresolution,theedgepositionalsomayestimate.Intheedgeexaminationalgorithm,thefirstthreestepsuseextremelyuniversally.Thisisbecauseundertliemajoritysituations,needstheedgedetectortopointoutmerelytheedgeappearsinimagesomepictureelementneighbor,butisnotunnecessarytopointouttheedgetheexactlocationorthedirection.Theedgeexaminestheerrorusuallyisreferstotheedgetoclassifytheerrorbymistake,namelydistinguishedthevacationedgetheedgeretains,butdistinguishedtherealedgethevacationedgeremoves.Theedgeerrorofestimationisdescribestheedgepositionandthelateralerrorwiththeprobabilitystatisticalmodel.Weexaminetheedgetheerrorandtheedgeerrorofestimationdifferentiate,isbecausetheircomputationalmethodiscompletelydifferent,itserrormodelcompletelyisalsodifferent?Theedgeexaminationisexaminestheimagepartialremarkablechangcthemostfuixiamcntaloperation.Intheunidiincnsionalsituation,thestepedgeconcernswiththeimagefirstderivativepartialpeakvalue.Thegradientisthefiinctionchangeonekindofmeasuie,butanimagemayregardasistheimageintensitycontinuousfunctionsamplingpointarray.Therefore,issimilarwiththeunidimensionalsituation,theimagegreylevelremarkablechangeavailablegradientdiscreteapproximationiiinctionexamines?Thegradientisfirstderivativetwo-dimensionalequivalent-like,definesforthevectorasaresultofeachkindofreason,theimagealwaysreceivesthestochasticnoisethedisturbance,maysaythenoiseisubiquitous.Becausetheclassicaledgeexaminationmethodhasintroducedeachformdifferentiate,thuscausesinevitablytothenoiseextremelyscrisitivc,carriesouttheedgeexaminationresultisfrequentlyexaminesthenoiseregardperipheralpoint,butbutthegenuineedgealsoasaresultofreceivesthenoisejammingnottoexamine.Thusregardinghasthenoiseimage,onegoodedgeexaminationmethodshouldhavethegoodnoiseabatementability,simultaneouslyalsohasthecompleteedgemaintenancecharacteristic。Accordingtothischaracteristic,weproposedmanykindsofedgeexaminationoperator:IfRobertoperator,Sobeloperator,Prewittoperator,Laplaceoperatorandsoon.ThesemethodsmanyarewaitfortheprocessingpictureelementtocaiTyonthegradationanalysisforthecentralneighborhoodachievementthefoundation,realizedandhasalreadyobtainedthegoodprocessingefleettotheimageedgeextraction,oButthiskindofmethodsimultaneouslyalsoexistshastheedgepictureelementwidth,thenoisejammingisseriousandsoontheshortcomings,evenifusessomeauxiliarymethodstoperformthedenoising,alsocorrespondingcanbringtheflawwhichtheedgefuzzyandsoonovercomeswithdifficulty。Alongwiththewaveletanalysisappearancetitsgoodtimefrequencypartialcliaracteristicbythewidespreadapplicationintheimageryprocessingandinthepatternrecognitiondomain,becomesinthesignalprocessingthecommonlyusedmethodandthepowerfultoolThroughthewaveletanalysis,mayinterweavedecomposesinthesameplaceeachkindofcompositesignalthedifferentfrequencytheblocksignal,butcarriesontheedgeexaminationthroughthewavelettransformation,mayuseitsmulti-criteriaandthemulti-resolutionnatureftilly,realeffectiveexpressestheimagetheedgecharacteristicoWhenthewavelettransformationcriterionreduces,ismoresensitivetotheimagedetail;Butwhenthecriterionincreases,theimagedetailisfilteredout,theexaminationedgewillbeonlythethickoutline.Thischaracteristicisextremelyusefulinthepatternrecognition,wemaybecalledthisthickoutlinetheimagethemainedge.Ifwillbeableanimagemainedgeclearintegrityextractioiithistothegoaldivision,therecognitionandsoonfollowingprocessingtobringtheenormousconvenience.Generallyspeaking,theabovemethodallistheworkwhichdoesbasedontheimageluminanceinlormationoInthemultitudinousscientiticresearchworkerunder,hasobtainedtheverygoodeffectdiligently.But,becausetheimageedgereceivesphysicalconditionandsoontheilluminationinfluencesquitetobebigabove,oftenenablesmanytohaveacommonshortcomingbasedonbrightnessedgedetectionmethod,tliatistheedgeisnotcontinual,docsnotsealup.Considcrcdthephaseinformationintheimageimportanceaswellasitsstablecharacteristic,causesusingthephaseinformationtocarryontheimageryprocessingintonewresearchtopic。Inthispapersoonintroducesonekindbasedonthephaseimagecliaracteristicexaminationmethodphaseuniformniethod.ltisnotusestheimagetheluminanceinformation,butisitspliasecharacteristic,namelysuppositionimageFouriercomponentphasemostconsistentspotachievementcharacteristicpoint.Notonlyitcanexaminebrightnesscharacteristicsandsoonstepcharacteristic,linecharacteristic,lwreovercanexamineMachbeltphenomenonwhichproducesasaresultofthehumanvisionsensationcharacteristic.Becausethephaseuniiormitydoesnotneedtocarryonanysuppositiontotheimagecharacteristictype,thereforeithastheverystrong。Doesnothaveinthenoisesituationintheimage,thePrewittoperator,theRobertoperator,theSobeloperatoraswellasthedifferentialgradientoperator,allcanthequiteaccurateexaminationedge.But,afterjoinsthewhitegaussiannoise,theRobertoperatorreceivestheinfluciKCissmallest,nextisthePrewittoperator,receivesaffectsinabigwayistheSobeloperator,butregardingthedifferentialgradientoperator,thenistheimageoverallcontrastgradienthasobviousdcprcssion.2-17mayseebyFigurc,indocsnothaveinthenoisesituation,theCannyoperator,theLOGoperatorandtheLaplaceoperatorallmayobtainthequitegoodexaminationeffect,but,theLOGoperatoraKvayscanproducethefalseedge,thisanditszerocrossingexaminationmethodconcerns.Afteraddsonthenoise,traditionalexiiminationoperator(Laplaceoperator)theexaminationqualitydroppedobviously,buttheLOGoperatorhasproducedmorefalseedgesunderthenoiseconditionButtheCannyoperatorexaminationresultiscontinuouslyextremelysatisfying?Aboutthenoisetotheedgealgorithminfluence,weinthenextsection,taketheLOGalgorithmastheexample,makesthequiteexhaustiveanalysisandtheelaboration.Theimagemajoritymaininformationallexistsintheimageedge,themainperformancefortheimagepartialcharacteristicdiscontinuity;isintheimagethegradationchangequitefierceplace,alsoisthesignalwhichweusuallysaidhasthestrangechangeplaceoThestrangesignalthegradationchangewhichmovestowardsalongtheedgeisfierce,usuallywedividetheedgeforthestepshapeandtheroofshapetwokindoftypes(asshowninFigurc1?1).Inthestepedgetwosidegreylevelshavetheobviouschange;Buttheroofshapeedgeislocatedthegradationincreaseandthereducedintersectionpoint.Mayportraytheperipheralpointinmathematicsusingthegradationderivativethechange,tothestepedge,theroofshapeedgeasksitsstep,thesecondtimederivativeseparatelyaToanedge,hasthepossibilitysimultaneouslytohavethestepandthelineedgecharacteristic.Forexampleonasurface,cliangesfromaplanetothenormaldirectiondifitirentanotherplanecanproducethestepedge;Ifthissurfacehastheedgesandcornerswhichtheregularreflectioncharacteristicalsotwoplanesformquitetobesmooth,thenworksaswhenedgesandcornerssmoothsuriacenormalaftermirrorsurfacereflectionangle,asaresultoftheregularreflectioncomponent,canproducethebrightlightstripontheedgesandcornerssmoothsurfiice,suchedgelookedlikehaslikelysuperimposedalineedgeinthestepedge.Becauseedgepossibleandinsceneobjectimportantcharacteristiccorrespondence,thereforeitistheveryimportantimagecharacteristic。Forinstance,anobjectoutlineusuallyproducesthestepedge,becausetheobjectimageintensityisdifferentwiththebackgroutxlimageintensity。Althoughtheedgedetectionhadthedifferentialgradientoperator,theLaplaceoperator,theSobeloperator,theLOGoperatoraswellastheCannyoperatorandsoonmanymethods,butthesealgorithmsdonothavetheautomaticfocalvariationthought?Bu(infact,asaresultofreasonsandsoonphysicsandilluminationineachimageedgeusuallyproducesinthedifferentcriterionscope,formsthedifferenttypetheedge(forexampleedgesandsoonstep,roof),theseinformationsareunknown.Moreover,intheimagealwayshasthenoise,therefore,accordingtotheimagecharacteristic,canauto-adaptedexaminetheimagetheedgeiscorrectlyextremelydifficult ?Easytoimagine,isnotimpossibletoexaminealledgeswi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 儀器進(jìn)口合同范本
- 小配套設(shè)施合同范本
- 現(xiàn)代辦公環(huán)境中電力系統(tǒng)的優(yōu)化投資
- 2025至2030年中國(guó)蓄電池在線監(jiān)測(cè)系統(tǒng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 煤礦機(jī)修工技能理論考試題庫(kù)150題(含答案)
- 煤礦輔助運(yùn)輸安全員技能理論考試題庫(kù)150題(含答案)
- 2025至2030年中國(guó)花崗石手工磨具數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 科技美術(shù)教育中的心理策略創(chuàng)新教學(xué)方法
- 科技創(chuàng)新在辦公設(shè)備智能化中的實(shí)踐
- 美發(fā)店員工勞動(dòng)培訓(xùn)與發(fā)展合同(2025年度)
- 監(jiān)理日志表(標(biāo)準(zhǔn)模版)
- H3C-CAS虛擬化平臺(tái)詳細(xì)介紹
- 小學(xué)生韻母in、ing常見漢字與區(qū)分練習(xí)
- 藥房品種類別及數(shù)量清單
- 機(jī)關(guān)檔案管理工作培訓(xùn)PPT課件
- 初中物理人教版八年級(jí)下冊(cè) 第1節(jié)牛頓第一定律 課件
- 網(wǎng)站培訓(xùn)內(nèi)容trswcm65表單選件用戶手冊(cè)
- 連續(xù)平壓熱壓機(jī) 三篇 俞敏等
- 打印版-圓與二次函數(shù)綜合題精練(帶答案)
- 各種閥門CAD圖
- 工程結(jié)算書標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論