下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省淄博市樊林中學2022-2023學年高二數學文月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.方程的兩個根可分別作為()
A.一橢圓和一雙曲線的離心率
B.兩拋物線的離心率C.一橢圓和一拋物線的離心率
D.兩橢圓的離心率參考答案:A2.已知是球表面上的點,,,,,則球的表面積等于(A)4
(B)3
(C)2
(D)參考答案:A略3.兩個二進制數101(2)與110(2)的和用十進制數表示為()A.12 B.11 C.10 D.9參考答案:B【考點】進位制.【專題】計算題;轉化思想;轉化法;算法和程序框圖.【分析】括號里的數字從左開始,第一位數字是幾,再乘以2的0次冪,第二位數字是幾,再乘以2的1次冪,以此類推,進行計算即可.【解答】解:∵由題意可得,(101)2=1×22+0×21+1×20=5.110(2)=1×22+1×21+0×20=6.∴5+6=11.故選:B.【點評】本題考查進位制,本題解題的關鍵是找出題目給出的運算順序,按照有理數混合運算的順序進行計算即可,本題是一個基礎題.4.下面有關三視圖的說法中,錯誤的是(
)A.正方體的三視圖中不可能有三角形
B.正四面體的三視圖均為正三角形C.圓柱的三視圖有可能是兩個正方形和一個圓D.球的三視圖都是圓參考答案:B5.已知數列,3,,…,,那么9是數列的(
)A.第12項
B.第14項
C.第15項
D.第13項參考答案:B6.有下述說法:①是的充要條件.
②是的充要條件.③是的充要條件.則其中正確的說法有(
)A.個
B.個
C.個
D.個參考答案:A7.動圓的圓心在拋物線y2=8x上,且動圓恒與直線x+2=0相切,則動圓必過定點()A.(4,0)
B.(0,-2)
C.(0,2)
D.(2,0)參考答案:D8.公比為的等比數列的各項都是正數,且,則(
)A.
B.
C.
D.參考答案:A9.已知的值如表所示:如果與呈線性相關且回歸直線方程為,則(
)A.
B.
C.
D.參考答案:B10.已知M(-2,0),N(2,0),|PM|-|PN|=4,則動點P的軌跡是(
)A.一條射線
B.雙曲線
C.雙曲線左支
D.雙曲線右支參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.已知隨機變量X的分布列為X01234P0.10.20.40.20.1則EX=
參考答案:1.212.橢圓的短軸長是2,一個焦點是,則橢圓的標準方程是____________參考答案:13.在△ABC中,角A,B,C所對的邊長分別為a,b,c.若∠C=120?,c=a,
則a
b(填“<”或“>”)參考答案:>14.已知的展開式中的常數項是____(用數字作答);參考答案:1515.若,則
.參考答案:1016.如下圖所示的數陣中,第10行第2個數字是________.參考答案:17.在所有的兩位數(10~99)中,任取一個數,則這個數能被2或3整除的概率是.參考答案:【考點】古典概型及其概率計算公式.【分析】先求出基本事件總數n=90,再求出這個數能被2或3整除包含的基本事件個數m=45+30﹣15=60,由此能求出這個數能被2或3整除的概率.【解答】解:在所有的兩位數(10~99)中,任取一個數,基本事件總數n=90,這個數能被2或3整除包含的基本事件個數m=45+30﹣15=60,∴這個數能被2或3整除的概率是p==.故答案為:.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.如圖,在平面四邊形中,是正三角形,,.
1)將四邊形的面積表示成關于的函數;2)求的最大值及此時的值.參考答案:19.給定雙曲線,過A(1,1)能否作直線m,使m與所給雙曲線交于B、C兩點,且A為線段BC中點?這樣的直線若存在,求出它的方程;如果不存在,說明理由.參考答案:解:假設存在題設中的直線m.---------1’
設直線m的方程為y-1=k(x-1),-----------2’
由
得
則
由(2)得:k=2-------------11’
代入(1)不成立,所以k=2時直線m與雙曲線不相交,故假設不成立,即題中的直線m不存在.--------------13’
略20.觀察下列等式:按照以上式子規(guī)律:(1)寫出第5個等式,并猜想第n個等式;()(2)用數學歸納法證明上述所猜想的第n個等式成立.()參考答案:(1),.(2)見解析.【分析】(1)根據規(guī)律可得第n行的開頭數字就是n,且每行2n-1個數字,右側是完全平方數,可得;(2)利用數學歸納法的步驟進行證明.【詳解】(1)第5個等式為;第個等式為,.(2)①當時,等式左邊,等式右邊,所以等式成立.②假設時,等式成立,即,(,)那么,當時,.即時等式成立.根據①和②,可知對任何,等式都成立.【點睛】本題主要考查數學歸納法的應用,利用觀察-歸納-猜想-證明的流程進行,側重考查邏輯推理的核心素養(yǎng).21.某校高二年級某班的數學課外活動小組有6名男生,4名女生,從中選出4人參加數學競賽考試,用X表示其中男生的人數.(1)請列出X的分布列;(2)根據你所列的分布列求選出的4人中至少有3名男生的概率.參考答案:(1)X
0
1
2
3
4
P
(2)試題分析:(1)本題是一個超幾何分步,用X表示其中男生的人數,X可能取的值為0,1,2,3,4.結合變量對應的事件和超幾何分布的概率公式,寫出變量的分布列和數學期望.(2)選出的4人中至少有3名男生,表示男生有3個人,或者男生有4人,根據第一問做出的概率值,根據互斥事件的概率公式得到結果.解:(1)依題意得,隨機變量X服從超幾何分布,隨機變量X表示其中男生的人數,X可能取的值為0,1,2,3,4..∴所以X的分布列為:X
0
1
2
3
4
P
(2)由分布列可知至少選3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.點評:本小題考查離散型隨機變量分布列和數學期望,考查超幾何分步,考查互斥事件的概率,考查運用概率知識解決實際問題的能力.22.已知橢圓C:=1(a>b>0)的離心率為,其左、右焦點分別是F1,F2,過點F1的直線l交橢圓C于E,G兩點,且△EGF2的周長為4(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A,B,設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數t的取值范圍.參考答案:【考點】直線與圓錐曲線的關系;橢圓的標準方程.【分析】(Ⅰ)根據橢圓的離心率找出a與b的關系式,再根據△EGF2的周長求出a與b的值,即可確定出橢圓C方程;(Ⅱ)根據題意得到直線AB斜率存在,設出直線AB方程,以及A(x1,y1),B(x2,y2),P(x,y),聯(lián)立直線AB解析式與橢圓方程,消去y得到關于x的一元二次方程,利用韋達定理表示出兩根之和與兩根之積,根據不等式求出k的范圍,進而確定出t的范圍.【解答】解:(Ⅰ)由題意知橢圓的離心率e==,∴e2===,即a2=2b2,又△EGF2的周長為4,即4a=4,∴a2=2,b2=1.∴橢圓C的方程為+y2=1;(Ⅱ)由題意知直線AB的斜率存在,即t≠0.設直線AB的方程為y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由,得(1+2k2)x2﹣8k2x+8k2﹣2=0,由△=64k4﹣4(2k2+1)(8k2﹣2)>0,得k2<.根據韋達定理得:x1+x2=,x1x2=,∵+=t,∴(x1+x2,y1+y2)=t(x,y),x==,y==[k(x1+x2)﹣4k]=,∵點P在橢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年魚塘綜合利用租賃協(xié)議2篇
- 2024年甲乙雙方關于2024年奧運會贊助權益分配的合同
- 2025年度蜜蜂產業(yè)聯(lián)盟合作協(xié)議范本3篇
- 2025年度博物館館藏品安全保管與修復服務合同3篇
- 2024年規(guī)范版夜間出租車租賃合同版
- 臨沂大學《民航服務英語(一)》2023-2024學年第一學期期末試卷
- 上海出版印刷高等??茖W?!洞髮W英語四》2023-2024學年第一學期期末試卷
- 2024年連鎖加盟合同樣本
- 鄭州職業(yè)技術學院《高級程序語言設計》2023-2024學年第一學期期末試卷
- 鄭州工商學院《病原生物學B》2023-2024學年第一學期期末試卷
- 2024年國家公務員錄用考試公共基礎知識復習題庫2500題及答案
- DB3309T 98-2023 登步黃金瓜生產技術規(guī)程
- DBJ41-T 108-2011 鋼絲網架水泥膨脹珍珠巖夾芯板隔墻應用技術規(guī)程
- 2025年學長引領的讀書會定期活動合同
- 水利工程全生命周期管理-洞察分析
- 2024年物業(yè)公司服務質量保證合同條款
- JJF(陜) 049-2021 變壓器交流阻抗參數測試儀校準規(guī)范
- 詞語理解-2025年中考語文專項復習(遼寧專用)(原卷版)
- 娛樂場所突發(fā)事件應急措施及疏散預案(三篇)
- 八大危險作業(yè)安全培訓考核試卷
- 老年焦慮癥的護理
評論
0/150
提交評論