版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-282.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.3.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③4.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立5.對于函數(shù),定義滿足的實數(shù)為的不動點,設,其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.6.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或77.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.8.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.9.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.10.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題11.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現(xiàn)從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.12.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.14.設實數(shù)滿足約束條件,則的最大值為______.15.若,i為虛數(shù)單位,則正實數(shù)的值為______.16.雙曲線的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.18.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:AQI空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.20.(12分)某公司打算引進一臺設備使用一年,現(xiàn)有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設備5103050乙設備05151515(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學期望為決策依據(jù),希望設備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設備?請說明理由.21.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,為的前n項和,求證:.22.(10分)設函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應用.2.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應用,其中解答中熟記三角函數(shù)的圖象變換,合理應用三角函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.4.C【解析】
A:否命題既否條件又否結(jié)論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎題.5.C【解析】
根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當時,,則在內(nèi)單調(diào)遞增;當時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應用,由導數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應用,屬于中檔題.6.C【解析】
根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.7.C【解析】
設,求,作為的函數(shù),其最小值是6,利用導數(shù)知識求的最小值.【詳解】設,則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數(shù)的應用,考查用導數(shù)求最值.解題時對和的關系的處理是解題關鍵.8.C【解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數(shù)式的應用,三角函數(shù)對稱軸的應用,三角函數(shù)圖像平移變換的應用,屬于中檔題.9.B【解析】
作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關鍵.10.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.11.B【解析】
首先求出基本事件總數(shù),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數(shù)為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.12.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
①根據(jù)向量數(shù)量積的坐標表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.14.【解析】
試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.15.【解析】
利用復數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎題.16.2【解析】三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),(2)最大值,最小值【解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數(shù)方程,普通方程及極坐標方程的轉(zhuǎn)化和直線與圓的位置關系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.18.(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.19.(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對應的概率,可得7月與8月經(jīng)濟損失的期望和,最后7月、8月、9月經(jīng)濟損失總額的數(shù)學期望與2.88萬元比較,可得結(jié)果.【詳解】(1)設ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟損失的數(shù)學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質(zhì)量造成的經(jīng)濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質(zhì)量造成經(jīng)濟損失總額的數(shù)學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質(zhì)量造成經(jīng)濟損失總額的數(shù)學期望會超過2.88萬元.【點睛】本題考查概率中的分布列以及數(shù)學期望,屬基礎題。20.(1)分布列見解析,分布列見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 摩托車買賣合同格式
- 軟件版權(quán)服務合同模板
- 品牌管理服務合同的效益評估
- 精簡土地租賃協(xié)議
- 民間借貸抵押合同模板
- 學校物業(yè)管理費用合同
- 企業(yè)員工借款合同示范
- 建筑勞務分包鋼筋工木工合同
- 校園網(wǎng)絡設備銷售合同
- 建筑業(yè)采購合同印花稅的繳納方式詳述
- 幼兒園故事課件:《胸有成竹》
- (完整版)康復科管理制度
- 深度千分尺校準記錄表
- GB/T 10000-2023中國成年人人體尺寸
- 電工安全用具課件
- 北師大版四年級數(shù)學上冊《不確定性》評課稿
- 模板銷售合同模板
- 對越自衛(wèi)反擊戰(zhàn)專題培訓課件
- 小學生簡筆畫社團活動記錄
- 出境竹木草制品公司原輔料采購驗收制度
- 2023年臨床醫(yī)學(軍隊文職)題庫(共五套)含答案
評論
0/150
提交評論