2023屆江蘇省淮安市漣水實驗中學數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第1頁
2023屆江蘇省淮安市漣水實驗中學數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第2頁
2023屆江蘇省淮安市漣水實驗中學數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第3頁
2023屆江蘇省淮安市漣水實驗中學數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第4頁
2023屆江蘇省淮安市漣水實驗中學數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.要制作兩個形狀相同的三角形框架,其中一個三角形的三邊長分別為,和,另一個三角形的最短邊長為2.5cm,則它的最長邊為()A.3cm B.4cm C.4.5cm D.5cm2.已知反比例函數(shù)的圖象經(jīng)過點(2,-2),則k的值為A.4 B. C.-4 D.-23.如圖,在△ABC中,DE∥BC,BE和CD相交于點F,且S△EFC=3S△EFD,則S△ADE:S△ABC的值為()A.1:3 B.1:8 C.1:9 D.1:44.某市從2017年開始大力發(fā)展“竹文化”旅游產(chǎn)業(yè).據(jù)統(tǒng)計,該市2017年“竹文化”旅游收入約為2億元.預計2019“竹文化”旅游收入達到2.88億元,據(jù)此估計該市2018年、2019年“竹文化”旅游收入的年平均增長率約為()A.2% B.4.4% C.20% D.44%5.如圖,已知二次函數(shù)的圖象與軸交于點(-1,0),與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點),對稱軸為直線,下列結(jié)論不正確的是()A. B. C. D.6.如圖,若A、B、C、D、E,甲、乙、丙、丁都是方格紙中的格點,為使△ABC與△DEF相似,則點F應是甲、乙、丙、丁四點中的().A.甲 B.乙 C.丙 D.丁7.如圖,BC是⊙O的直徑,點A、D在⊙O上,若∠ADC=48°,則∠ACB等于()度.A.42 B.48 C.46 D.508.如圖,正方形ABCD中,對角線AC,BD交于點O,點M,N分別為OB,OC的中點,則cos∠OMN的值為()A. B. C. D.19.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若⊙O的半徑為4,且∠B=2∠D,連接AC,則線段AC的長為()A.4 B.4 C.6 D.810.若2y-7x=0,則x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶4二、填空題(每小題3分,共24分)11.已知,是拋物線上兩點,該拋物線的解析式是__________.12.已知兩個相似三角形的相似比為2︰5,其中較小的三角形面積是,那么另一個三角形的面積為.13.如圖,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,現(xiàn)利用該三角形裁剪一個最大的圓,則該圓半徑是_____cm.14.已知函數(shù)的圖象如圖所示,點P是y軸負半軸上一動點,過點P作y軸的垂線交圖象于A、B兩點,連接OA、OB.下列結(jié)論;①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;②當點P坐標為(0,﹣3)時,△AOB是等腰三角形;③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;④當點P移動到使∠AOB=90°時,點A的坐標為(2,﹣).其中正確的結(jié)論為___.15.小明發(fā)現(xiàn)相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.16.如圖,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O在格點上,則∠AED的正切值為_____.17.小明擲一枚硬幣10次,有9次正面向上,當他擲第10次時,正面向上的概率是_____.18.如圖,ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,則圖中陰影部分的面積為______.三、解答題(共66分)19.(10分)為了響應市政府號召,某校開展了“六城同創(chuàng)與我同行”活動周,活動周設置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學生選一個主題參與.為了解活動開展情況,學校隨機抽取了部分學生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.(1)本次隨機調(diào)查的學生人數(shù)是______人;(2)請你補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角等于______度;(4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式求他們恰好選中同一個主題活動的概率.20.(6分)某商店購進一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(元之間滿足一次函數(shù)關系,其圖象如圖所示.(1)求該商品每天的銷售量與銷售單價之間的函數(shù)關系式;(2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應為多少件?(3)若商店按單價不低于成本價,且不高于65元銷售,則銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?21.(6分)已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).(1)求證:AC=BD;(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.22.(8分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.23.(8分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B,(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.(3)在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.24.(8分)全國第二屆青年運動會是山西省歷史上第一次舉辦的大型綜合性運動會,太原作為主賽區(qū),新建了很多場館,其中在汾河東岸落成了太原水上運動中心,它的終點塔及媒體中心是一個以“大帆船”造型(如圖1),外觀極具創(chuàng)新,這里主要承辦賽艇、皮劃艇、龍舟等項目的比賽.“青春”數(shù)學興趣小組為了測量“大帆船”AB的長度,他們站在汾河西岸,在與AB平行的直線l上取了兩個點C、D,測得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如圖1.請根據(jù)測量結(jié)果計算“大帆船”AB的長度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)25.(10分)如圖,反比例函數(shù)()的圖象與一次函數(shù)的圖象交于,兩點.(1)分別求出反比例函數(shù)與一次函數(shù)的表達式.(2)當反比例函數(shù)的值大于一次函數(shù)的值時,請根據(jù)圖象直接寫出的取值范圍.26.(10分)如圖,在△ABC中,DE∥BC,,M為BC上一點,AM交DE于N.(1)若AE=4,求EC的長;(2)若M為BC的中點,S△ABC=36,求S△ADN的值.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)相似三角形三邊對應成比例進行求解即可得.【詳解】設另一個三角形的最長邊為xcm,由題意得5:2.5=9:x,解得:x=4.5,故選C.【點睛】本題考查了相似三角形的性質(zhì),熟知相似三角形對應邊成比例是解題的關鍵.2、C【解析】∵反比例函數(shù)的圖象經(jīng)過點(2,-2),∴.故選C.3、C【分析】根據(jù)題意,易證△DEF∽△CBF,同理可證△ADE∽△ABC,根據(jù)相似三角形面積比是對應邊比例的平方即可解答.【詳解】∵S△EFC=3S△DEF,∴DF:FC=1:3(兩個三角形等高,面積之比就是底邊之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故選:C.【點睛】本題考查相似三角形的判定和性質(zhì),解題的關鍵是掌握相似三角形面積比是對應邊比例的平方.4、C【解析】分析:設該市2018年、2019年“竹文化”旅游收入的年平均增長率為x,根據(jù)2017年及2019年“竹文化”旅游收入總額,即可得出關于x的一元二次方程,解之取其正值即可得出結(jié)論.詳解:設該市2018年、2019年“竹文化”旅游收入的年平均增長率為x,根據(jù)題意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去).答:該市2018年、2019年“竹文化”旅游收入的年平均增長率約為20%.故選C.點睛:本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.5、D【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)、各項系數(shù)結(jié)合圖象進行解答.【詳解】∵(-1,0),對稱軸為∴二次函數(shù)與x軸的另一個交點為將代入中,故A正確將代入中②①∴∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴∴∴,故B正確;∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴拋物線頂點縱坐標∵拋物線開口向上∴∴,故C正確∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴將代入中①②∴∴,故D錯誤,符合題意故答案為:D.【點睛】本題主要考查了二次函數(shù)的圖象與函數(shù)解析式的關系,可以根據(jù)各項系數(shù)結(jié)合圖象進行解答.6、A【分析】令每個小正方形的邊長為1,分別求出兩個三角形的邊長,從而根據(jù)相似三角形的對應邊成比例即可找到點F對應的位置.【詳解】解:根據(jù)題意,△ABC的三邊之比為要使△ABC∽△DEF,則△DEF的三邊之比也應為經(jīng)計算只有甲點合適,

故選:A.

【點睛】本題考查了相似三角形的判定定理:

(1)兩角對應相等的兩個三角形相似.

(2)兩邊對應成比例且夾角相等的兩個三角形相似.

(3)三邊對應成比例的兩個三角形相似.7、A【分析】連接AB,由圓周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性質(zhì)即可得出答案.【詳解】解:連接AB,如圖所示:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故選:A.【點睛】本題考查了圓周角定理以及直角三角形的性質(zhì);熟練掌握圓周角定理是解題的關鍵.8、B【詳解】∵正方形對角線相等且互相垂直平分∴△OBC是等腰直角三角形,∵點M,N分別為OB,OC的中點,∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=9、B【分析】連接OA,OC,利用內(nèi)接四邊形的性質(zhì)得出∠D=60°,進而得出∠AOC=120°,利用含30°的直角三角形的性質(zhì)解答即可.【詳解】連接OA,OC,過O作OE⊥AC,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故選:B.【點睛】此題考查內(nèi)接四邊形的性質(zhì),關鍵是利用內(nèi)接四邊形的性質(zhì)得出∠D=60°.10、A【分析】由2y-7x=0可得2y=7x,再根據(jù)等式的基本性質(zhì)求解即可.【詳解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故選A.【點睛】比例的性質(zhì),根據(jù)等式的基本性質(zhì)2進行計算即可,是基礎題,比較簡單.二、填空題(每小題3分,共24分)11、【分析】將A(0,3),B(2,3)代入拋物線y=-x2+bx+c的解析式,可得b,c,可得解析式.【詳解】∵A(0,3),B(2,3)是拋物線y=-x2+bx+c上兩點,∴代入得,解得:b=2,c=3,∴拋物線的解析式為:y=-x2+2x+3.故答案為:y=-x2+2x+3.【點睛】本題主要考查了待定系數(shù)法求解析式,利用代入法解得b,c是解答此題的關鍵.12、25【解析】試題解析:∵兩個相似三角形的相似比為2:5,∴面積的比是4:25,∵小三角形的面積為4,∴大三角形的面積為25.故答案為25.點睛:相似三角形的面積比等于相似比的平方.13、1.【分析】根據(jù)勾股定理求出的斜邊AB,再由等面積法,即可求得內(nèi)切圓的半徑.【詳解】由題意得:該三角形裁剪的最大的圓是Rt△ABC的內(nèi)切圓,設AC邊上的切點為D,連接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB==50cm,設半徑OD=rcm,∴S△ACB==,∴30×40=30r+40r+50r,∴r=1,則該圓半徑是1cm.故答案為:1.【點睛】本題考查內(nèi)切圓、勾股定理和等面積法的問題,屬中檔題.14、②③④.【分析】①錯誤.根據(jù)x1<x2<0時,函數(shù)y隨x的增大而減小可得;②正確.求出A、B兩點坐標即可解決問題;③正確.設P(0,m),則B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正確.設P(0,m),則B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PB?PA,列出方程即可解決問題.【詳解】解:①錯誤.∵x1<x2<0,函數(shù)y隨x是增大而減小,∴y1>y2,故①錯誤.②正確.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正確.③正確.設P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正確.④正確.設P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB?PA,∴m2=﹣?(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正確.∴②③④正確,故答案為②③④.【點睛】本題考查反比例函數(shù)綜合題、等腰三角形的判定、兩點間距離公式、相似三角形的判定和性質(zhì)、待定系數(shù)法等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數(shù),構建方程解決問題.15、1【分析】設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM的長,,而且面積等于小正六邊形的面積的,故三角形PMN的面積很容易被求出,根據(jù)正六邊形的性質(zhì)及等腰三角形的三線和一可以得出PG的長,進而得出OG的長,,在Rt△OPG中,根據(jù)勾股定理得OP的長,設OB為x,,根據(jù)正六邊形的性質(zhì)及等腰三角形的三線和一可以得出BH,OH的長,進而得出PH的長,在Rt△PHO中,根據(jù)勾股定理得關于x的方程,求解得出x的值,從而得出答案.【詳解】解:設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM=,而且面積等于小正六邊形的面積的,故三角形PMN的面積為cm2,∵OG⊥PM,且O是正六邊形的中心,∴PG=PM=∴OG=在Rt△OPG中,根據(jù)勾股定理得:OP2=OG2+PG2,即=OP2∴OP=7cm,設OB為x,∵OH⊥AB,且O是正六邊形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根據(jù)勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故該圓的半徑為1cm.故答案為1.【點睛】本題以相機快門為背景,從中抽象出數(shù)學模型,綜合考查了多邊形、圓、三角形及解三角形等相關知識,突出考查數(shù)學的應用意識和解決問題的能力.試題通過將快門的光圈變化這個動態(tài)的實際問題化為靜態(tài)的數(shù)學問題,讓每個學生都能參與到實際問題數(shù)學化的過程中,鼓勵學生用數(shù)學的眼光觀察世界;在運用數(shù)學知識解決問題的過程中,關注思想方法,側(cè)重對問題的分析,將復雜的圖形轉(zhuǎn)化為三角形或四邊形解決,引導學生用數(shù)學的語言表達世界,用數(shù)學的思維解決問題.16、.【詳解】解:根據(jù)圓周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案為:.【點睛】本題考查圓周角定理;銳角三角函數(shù).17、.【分析】根據(jù)概率的性質(zhì)和概率公式即可求出,當他擲第10次時,正面向上的概率.【詳解】解:∵擲一枚質(zhì)地均勻的硬幣,有兩種結(jié)果:正面朝上,反面朝上,每種結(jié)果等可能出現(xiàn),∴她第10次擲這枚硬幣時,正面向上的概率是:.故答案為:.【點睛】本題考查了概率統(tǒng)計的問題,根據(jù)概率公式求解即可.18、【分析】根據(jù)題意,作出合適的輔助線,由圖可知,陰影部分的面積=△CBF的面積,根據(jù)題目的條件和圖形,可以求得△BCF的面積,從而可以解答本題.【詳解】連接OD、OF、BF,作DE⊥OA于點E,∵ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等邊三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等邊三角形,∵弓形DF的面積=弓形FB的面積,DE=OD?sin60°=,∴圖中陰影部分的面積為:=,故答案為:.【點睛】本題考查了求陰影部分面積的問題,掌握三角形面積公式是解題的關鍵.三、解答題(共66分)19、(1)60;(2)見解析;(3)108;(4).【分析】(1)用A的人類除以A所占的百分比即可求得答案;(2)求出c的人數(shù),補全統(tǒng)計圖即可;(3)用360度乘以B所占的比例即可得;(4)畫樹狀圖得到所有等可能的情況數(shù),找出符合條件的情況數(shù),利用概率公式求解即可.【詳解】(1)本次隨機調(diào)查的學生人數(shù)人,故答案為60;(2)(人),補全條形統(tǒng)計圖如圖1所示:(3)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角,故答案為108;(4)畫樹狀圖如圖2所示:共有16個等可能的結(jié)果,小明和小華恰好選中同一個主題活動的結(jié)果有4個,小明和小華恰好選中同一個主題活動的概率.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖信息關聯(lián),列表法或樹狀圖法求概率,弄清題意,讀懂統(tǒng)計圖,從中找到必要的信息是解題的關鍵.20、(1)y=-2x+200;(2)100件或20件;(3)銷售單價定為65元時,該超市每天的利潤最大,最大利潤1750元【分析】(1)將點(40,120)、(60,80)代入一次函數(shù)表達式,即可求解;(2)由題意得(x-40)(-2x+200)=1000,解不等式即可得到結(jié)論;(3)由題意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【詳解】(1)設y與銷售單價x之間的函數(shù)關系式為:y=kx+b,

將點(40,120)、(60,80)代入一次函數(shù)表達式得:解得,所以關系式為y=-2x+200;(2)由題意得:(x-40)(-2x+200)=1000解得x1=50,x2=90;所以當x=50時,銷量為:100件;當x=90時,銷量為20件;(3)由題意可得利潤W=(x-40)(-2x+200)=-2(x-70)2+1800,∵-2<0,故當x<70時,w隨x的增大而增大,而x≤65,

∴當x=65時,w有最大值,此時,w=1750,

故銷售單價定為65元時,該超市每天的利潤最大,最大利潤1750元.【點睛】考查了二次函數(shù)的應用以及一元二次不等式的應用、待定系數(shù)法求一次函數(shù)解析式等知識,正確利用銷量×每件的利潤=w得出函數(shù)關系式是解題關鍵.21、(1)證明見解析;(2)8﹣.【分析】(1)過O作OE⊥AB,根據(jù)垂徑定理得到AE=BE,CE=DE,從而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,連接OC,OA,再根據(jù)勾股定理求出CE及AE的長,根據(jù)AC=AE﹣CE即可得出結(jié)論.【詳解】解:(1)證明:如答圖,過點O作OE⊥AB于點E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,連接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.22、兩人之中至少有一人直行的概率為.【解析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.23、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【分析】(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關的綜合性題目,用到的知識點有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運用,靈活

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論