2023屆江蘇省徐州市西苑中學數(shù)學九上期末考試試題含解析_第1頁
2023屆江蘇省徐州市西苑中學數(shù)學九上期末考試試題含解析_第2頁
2023屆江蘇省徐州市西苑中學數(shù)學九上期末考試試題含解析_第3頁
2023屆江蘇省徐州市西苑中學數(shù)學九上期末考試試題含解析_第4頁
2023屆江蘇省徐州市西苑中學數(shù)學九上期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.2.如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎上,進一步證明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分3.小新拋一枚質(zhì)地均勻的硬幣,連續(xù)拋三次,硬幣落地均正面朝上,如果他第四次拋硬幣,那么硬幣正面朝上的概率為()A. B. C.1 D.4.一元二次方程的一次項系數(shù)是()A. B. C. D.5.已知二次函數(shù)y=(a≠0)的圖像如圖所示,對稱軸為x=-1,則下列式子正確的個數(shù)是()(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2-4ac<0A.1個 B.2個 C.3個 D.4個6.拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個7.如圖,在△ABC中,DE∥BC,=,DE=4cm,則BC的長為()A.8cm B.12cm C.11cm D.10cm8.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和B,與y軸的正半軸交于點C,下列結(jié)論:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個9.五糧液集團2018年凈利潤為400億元,計劃2020年凈利潤為640億元,設這兩年的年凈利潤平均增長率為x,則可列方程是()A. B.C. D.10.如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為()A.1 B.2 C.3 D.411.已知反比例函數(shù)y=的圖象經(jīng)過點P(﹣1,2),則這個函數(shù)的圖象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限12.一次擲兩枚質(zhì)地均勻的硬幣,出現(xiàn)兩枚硬幣都正面朝上的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,圓錐的母線長為5,底面圓直徑CD與高AB相等,則圓錐的側(cè)面積為_____.14.如圖,△ABC三個頂點的坐標分別為A(2,2),B(4,2),C(6,4),以原點為位似中心,將△ABC縮小,使變換得到的△DEF與△ABC對應邊的比為1∶2,則線段AC的中點P變換后對應點的坐標為____.15.由一些大小相同的小正方體搭成的幾何體的主視圖和俯視圖,如圖所示,則搭成該幾何體的小正方體最多是_____個.16.已知是一元二次方程的一個根,則的值是______.17.在一個不透明的袋子里裝有黃色、白色乒乓球共40個,除顏色外其他完全相同.小明從這個袋子中隨機摸出一球,放回.通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到黃色球的概率穩(wěn)定在15%附近,則袋中黃色球可能有___個.18.如圖,扇形OAB中,∠AOB=60°,OA=4,點C為弧AB的中點,D為半徑OA上一點,點A關于直線CD的對稱點為E,若點E落在半徑OA上,則OE=______.三、解答題(共78分)19.(8分)如圖,是的直徑,且,點為外一點,且,分別切于點、兩點.與的延長線交于點.(1)求證:;(2)填空:①當__________時,四邊形是正方形.②當____________時,為等邊三角形.20.(8分)已知,二次三項式﹣x2+2x+1.(1)關于x的一元二次方程﹣x2+2x+1=﹣mx2+mx+2(m為整數(shù))的根為有理數(shù),求m的值;(2)在平面直角坐標系中,直線y=﹣2x+n分別交x,y軸于點A,B,若函數(shù)y=﹣x2+2|x|+1的圖象與線段AB只有一個交點,求n的取值范圍.21.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.22.(10分)如圖,在△ABC中,DE∥BC,,M為BC上一點,AM交DE于N.(1)若AE=4,求EC的長;(2)若M為BC的中點,S△ABC=36,求S△ADN的值.23.(10分)如圖,在社會實踐活動中,某數(shù)學興趣小組想測量在樓房CD頂上廣告牌DE的高度,他們先在點A處測得廣告牌頂端E的仰角為60°,底端D的仰角為30°,然后沿AC方向前行20m,到達B點,在B處測得D的仰角為45°(C,D,E三點在同一直線上).請你根據(jù)他們的測量數(shù)據(jù)計算這廣告牌DE的高度(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):,).24.(10分)如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度.25.(12分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若該方程有一根為2,求a的值及方程的另一根;(2)當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.26.如圖,要在長、寬分別為40米、24米的矩形賞魚池內(nèi)建一個正方形的親水平臺.為了方便行人觀賞,分別從東、南、西、北四個方向修四條等寬的小路與平臺相連,若小路的寬是正方形平臺邊長的,小路與親水平臺的面積之和占矩形賞魚池面積的,求小路的寬.

參考答案一、選擇題(每題4分,共48分)1、D【解析】由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.2、B【解析】解:A.根據(jù)有一組鄰邊相等的平行四邊形是菱形,或者對角線互相垂直的平行四邊形是菱形,所以不能判斷平行四邊形ABCD是正方形;B.根據(jù)鄰邊相等的平行四邊形是菱形,對角線相等的平行四邊形為矩形,所以能判斷四邊形ABCD是正方形;C.根據(jù)一組鄰角相等的平行四邊形是矩形,對角線相等的平行四邊形也是矩形,即只能證明四邊形ABCD是矩形,不能判斷四邊形ABCD是正方形;D.根據(jù)對角線互相垂直的平行四邊形是菱形,對角線互相平分的四邊形是平行四邊形,所以不能判斷四邊形ABCD是正方形.故選B.3、A【解析】試題分析:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是.故選A.考點:概率公式.4、C【分析】根據(jù)一元二次方程的一般式判斷即可.【詳解】解:該方程的一次項系數(shù)為.故選:【點睛】本題考查的是一元二次方程的項的系數(shù),不是一般式的先化成一般式再判斷.5、B【詳解】由圖像可知,拋物線開口向下,a<0,圖像與y軸交于正半軸,c>0,對稱軸為直線x=-1<0,即-<0,因為a<0,所以b<0,所以abc>0,故(1)正確;由-=-1得,b=2a,即2a-b=0,故(2)錯誤;由圖像可知當x=2時,y<0,即4a+2b+c<0,故(3)正確;該圖像與x軸有兩個交點,即b2-4ac>0,故(4)錯誤,本題正確的有兩個,故選B.6、D【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線與x軸有兩不同的交點,∴△=b2﹣4ac>1.故①正確;②∵拋物線y=ax2+bx+c的圖象經(jīng)過點(1,2),∴代入得a+b+c=2.故②正確;③∵根據(jù)圖示知,拋物線開口方向向上,∴a>1.又∵對稱軸x=﹣<1,∴b>1.∵拋物線與y軸交與負半軸,∴c<1,∴abc<1.故③正確;④∵當x=﹣1時,函數(shù)對應的點在x軸下方,則a﹣b+c<1,故④正確;綜上所述,正確的結(jié)論是:①②③④,共有4個.故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系.會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.7、B【分析】由平行可得=,再由條件可求得=,代入可求得BC.【詳解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故選:B.【點睛】本題主要考查平行線分線段成比例的性質(zhì),掌握平行線分線段成比例中的對應線段成比例是解題的關鍵.8、C【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,進而判斷①;根據(jù)x=﹣2時,y>1可判斷②;根據(jù)對稱軸x=﹣1求出2a與b的關系,進而判斷③.【詳解】①由拋物線開口向下知a<1,∵對稱軸位于y軸的左側(cè),∴a、b同號,即ab>1.∵拋物線與y軸交于正半軸,∴c>1,∴abc>1;故①正確;②如圖,當x=﹣2時,y>1,則4a﹣2b+c>1,故②正確;③∵對稱軸為x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③錯誤;故選:C.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì),解題的關鍵是掌握數(shù)形結(jié)合思想的應用,注意掌握二次函數(shù)圖象與系數(shù)的關系.9、B【分析】根據(jù)平均年增長率即可解題.【詳解】解:設這兩年的年凈利潤平均增長率為x,依題意得:故選B.【點睛】本題考查了一元二次方程的實際應用,屬于簡單題,熟悉平均年增長率概念是解題關鍵.10、B【解析】試題分析:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=220°,∴CO⊥AB,∠CAB=30°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,則=3,∵點A是雙曲線在第二象限分支上的一個動點,∴=AD?DO=×6=3,∴k=EC×EO=2,則EC×EO=2.故選B.考點:2.反比例函數(shù)圖象上點的坐標特征;2.綜合題.11、D【分析】此題涉及的知識點是反比例函數(shù)的圖像與性質(zhì),根據(jù)點坐標P(﹣1,2)帶入反比例函數(shù)y=中求出k值就可以判斷圖像的位置.【詳解】根據(jù)y=的圖像經(jīng)過點P(-1,2),代入可求的k=-2,因此可知k<0,即圖像經(jīng)過二四象限.故選D【點睛】此題重點考察學生對于反比例函數(shù)圖像和性質(zhì)的掌握,把握其中的規(guī)律是解題的關鍵.12、D【解析】試題分析:先利用列表法與樹狀圖法表示所有等可能的結(jié)果n,然后找出某事件出現(xiàn)的結(jié)果數(shù)m,最后計算概率.同時擲兩枚質(zhì)地均勻的硬幣一次,共有正正、反反、正反、反正四種等可能的結(jié)果,兩枚硬幣都是正面朝上的占一種,所以兩枚硬幣都是正面朝上的概率=1÷4=.考點:概率的計算.二、填空題(每題4分,共24分)13、5π【分析】根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長進行計算.【詳解】解:設CB=x,則AB=2x,根據(jù)勾股定理得:x2+(2x)2=52,解得:x=,∴底面圓的半徑為,∴圓錐的側(cè)面積=××2π×5=5π.故答案為:5π.【點睛】本題考查圓錐的面積,熟練掌握圓錐的面積公式及計算法則是解題關鍵.14、(1,)或(-1,-)【分析】位似變換中對應點的坐標的變化規(guī)律:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.本題中k=1或?1.【詳解】解:∵兩個圖形的位似比是1:(?)或1:,AC的中點是(4,3),∴對應點是(1,)或(?1,?).【點睛】本題主要考查位似變換中對應點的坐標的變化規(guī)律.15、1【分析】根據(jù)幾何體的三視圖可進行求解.【詳解】解:根據(jù)題意得:則搭成該幾何體的小正方體最多是1+1+1+2+2=1(個).故答案為1.【點睛】本題主要考查幾何體的三視圖,熟練掌握幾何體的三視圖是解題的關鍵.16、0【分析】將代入方程中,可求出m的兩個解,然后根據(jù)一元二次方程的定義即可判斷m可取的值.【詳解】解:將代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案為:0.【點睛】此題考查的是一元二次方程的定義和解,掌握一元二次方程的二次項系數(shù)不為0和解的定義是解決此題的關鍵.17、1【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:設袋中黃色球可能有x個.根據(jù)題意,任意摸出1個,摸到黃色乒乓球的概率是:15%=,解得:x=1.∴袋中黃色球可能有1個.故答案為:118、1﹣1【分析】連接OC,作EF⊥OC于F,根據(jù)圓心角、弧、弦的關系定理得到∠AOC=30°,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理得到∠ECF=15°,根據(jù)正切的定義列式計算,得到答案.【詳解】連接OC,作EF⊥OC于F,∵點A關于直線CD的對稱點為E,點E落在半徑OA上,∴CE=CA,∵=,∴∠AOC=∠AOB=30°,∵OA=OC,∴∠OAC=∠OCA=75°,∵CE=CA,∴∠CAE=∠CEA=75°,∴∠ACE=30°,∴∠ECF=∠OCA-∠ACE=75°-30°=15°,設EF=x,則FC=x,在Rt△EOF中,tan∠EOF=,∴OF==,由題意得,OF+FC=OC,即x+x=1,解得,x=2﹣2,∵∠EOF=30°,∴OE=2EF=1﹣1,故答案為:1﹣1.【點睛】本題考查了圓心角、弧、弦的關系、解直角三角形的應用、三角形內(nèi)角和定理,掌握銳角三角函數(shù)的定義是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)①;②【分析】(1)由切線長定理可得MC=MA,可得∠MCA=∠MAC,由余角的性質(zhì)可證得DM=CM;(2)①由正方形性質(zhì)可得CM=OA=3;②由等邊三角形的性質(zhì)可得∠D=60,再由直角三角形的性質(zhì)可求得答案.【詳解】證明:(1)如圖,連接,,分別切于點、兩點,,,,,是直徑,,,,,,,(2)①四邊形是正方形,,當時,四邊形是正方形,②若是等邊三角形,,且,,,,,當時,為等邊三角形.【點睛】本題是圓的綜合題,考查了切線長定理,直角三角形的性質(zhì),正方形的性質(zhì),等邊三角形的性質(zhì)等知識,熟練運用這些性質(zhì)進行推理是正確解答本題的關鍵.20、(1)m=7;(2)n≤﹣2或1≤n<2.【分析】(1)方程化為(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,由已知可得m﹣4=±1,解得m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),根據(jù)題意可得,當≤﹣1,n<1時,n≤﹣2;當>﹣1,n≥1時,n≥1;當>1,n≤1時,n不存在;當<1,n≥1時,1≤n<2;綜上所述:n≤﹣2或1≤n<2.【詳解】解:(1)方程化為(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,∵m為整數(shù),方程的根為有理數(shù),∴m﹣4=±1,∴m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),∵函數(shù)y=﹣x2+2|x|+1的圖象與線段AB只有一個交點,當≤﹣1,n<1時,∴n≤﹣2;當>﹣1,n≥1時,∴n≥1;當>1,n≤1時,n不存在;當<1,n≥1時,1≤n<2;綜上所述:n≤﹣2或1≤n<2.【點睛】本題考查二次函數(shù)、一次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)、一次函數(shù)的圖象及性質(zhì),一元二次方程根的判別是解題的關鍵.21、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】(1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調(diào)查的市民人數(shù),據(jù)此可得項目A,C的百分比;(2)根據(jù)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據(jù)全市總?cè)藬?shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.22、(1)2(2)8【解析】(1)首先根據(jù)DE∥BC得到△ADE和△ABC相似,求出AC的長度,然后根據(jù)CE=AC-AE求出長度;(2)根據(jù)△ABC的面積求出△ABM的面積,然后根據(jù)相似三角形的面積比等于相似比的平方求出△ADN的面積.【詳解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面積為36,點M為BC的中點∴△ABM的面積為:36÷2=18∵△ADN和△ABM的相似比為∴∴=8考點:相似三角形的判定與性質(zhì)23、廣告牌的高度為54.6米.【分析】由題可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出關于CD的等式并解出,從而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的長度,最后用CE-CD即為所求.【詳解】解:∵又,在中,即答:廣告牌的高度為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論