統(tǒng)計(jì)熱力學(xué)基礎(chǔ)_第1頁
統(tǒng)計(jì)熱力學(xué)基礎(chǔ)_第2頁
統(tǒng)計(jì)熱力學(xué)基礎(chǔ)_第3頁
統(tǒng)計(jì)熱力學(xué)基礎(chǔ)_第4頁
統(tǒng)計(jì)熱力學(xué)基礎(chǔ)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

統(tǒng)計(jì)熱力學(xué)基礎(chǔ)

化學(xué)化工學(xué)院尹世偉2015-7-14Elementsofstatisticalthermodynamics

LeonardKNash

物理化學(xué)上冊(cè)第七章

傅獻(xiàn)彩

熱力學(xué)統(tǒng)計(jì)物理

汪志誠(chéng)OutlineStatisticalViewpointThepartitionfunctionEvaluationofpartitionfunctionApplicationStatisticalviewpointTwoimportantconvictionsatnineteencentury:Energyormass-energyremainconstantEntropyincreaseduringthespontaneousenergy+entropyThermodynamicsWhatcanhappen?YESWhyofthosehappenings?NOTThermodynamicparametersGUHAStatisticalviewpointThermodynamics:N2+H2+NH3

PositionofequilibriumbymacroscopicexperimentalmeasurementssuchasGYES

Whythatistheequilibriumcondition.NOTHowNH3determinesthemagnitudeofthefree-energyofthatcompound?YESStatisticalmechanicsThermodynamicSystemAssemblyofunitsStatisticalmechanicsProvideatoolstocalculatethethermodynamicparameters(UHSA…)basedonsomeparametersdescribingsuchconstituentunitsasatomsandmolecules.Whatarethosesomeparameters?Inboundedsystemformicroscopicunits,theenergiesare“quantized”.Theenergiesofamacroscopicsystemformavirtualcontinuumofpossibilities,whichassociatedwithintegralvaluesofsome“quantumnumber”.QuantizationexamplesElectronenergiesofHydrogen

atom

:Thepossiblestatesofhydrogenatomarerelatedwithquantumnumbern.Thetotalenergiesofsystem(manyhydrogenatoms)areintegralofquantumnumber.Unitsofmolecules,besidesquantizedelectronicenergies,alsohavevariousvibrationalmotions.Underharmonicoscillationapproximation,theonlypermissiblevibrationalenergyaregivenbytheequations:vvibrationalquantumnumber,characteristicfrequencyPossiblevibrationalstatesisshowedbydistinctiveintegralvalueofvibrationalquantumnumber

QuantizationexamplesRotationalandtranslationalmotionsbothatomandmoleculesarerelatedtosetsofdiscretequantumstates.Itseemscompletelyhopelesspretensionwhenviewingamacroscopicthermodynamicsystemasanassemblyofmyraidsubmicroscopicentitles(1023)inmyraidever-changingquantumstates.Actually,justbecauseofenormousnumberinvolved,theproblemprovesunexpectedlytractablewhenwegiveitastatisticalformation!MicrostatesandconfigurationsSystemswithidenticalunitsandquantumstateswithanevenlyspacedenergies,suchasone-demensionalharmonicoscillatorsfixedpositionsincrystallattice.MicrostatesandconfigurationsThreelocalizedoscillatorssharethreequantaofenergyMicrostatesandconfigurationsMicrostatesandconfigurationsThenumber(W)ofmicrostatesassociatedwithanyconfigurationsinvolvingNdistinguishableunits:a

meansthenumbersofunitsassignedthesamenumberofenergyquantaaCondition:Anyspeciesofdistinguishableunitwithanyenergyspacingbetweentheirquantumlevels.WhenNisveryhugenumber>10000(SterlingequationP460physicalchemistry)Fivelocalizedoscillatorssharefivequantaofenergy(5-5assembly)MicrostatesandconfigurationsMicrostatesandconfigurations10localizedoscillatorssharefivequantaofenergyMicrostatesandconfigurations10localizedoscillatorsshare5quantaofenergyMicrostatesandconfigurations10-5assemblyhistgraphMicrostatesandconfigurationsResults:1.Thenumberofmicrostates(Wtot)skyrocketstounimaginablemagnitudesasthenumberifunitsincreasesfurther.(微觀狀態(tài)數(shù)隨著粒子數(shù)的增加火箭式的增加)Forexamples,1000localizedharmonicoscillatorssharing1000energyquantapossessesmorethan10600differentmicrostatesGalaxyatomssmallerthan1070,universityatomssmallerthan106002.Theemergenceofapredominantconfigurationischaracteristicofanyassemblywithalargenumber(N)ofunits.(粒子數(shù)大到一定程度時(shí),總會(huì)有一種“最可幾”微觀狀態(tài)出現(xiàn))predominantconfigurationTossingawell-balancedcoinintwoways:head(H)ortail(T)Toss4times.Thepossibleresultsare:IHHHHHHTTHTTTIIHHHTHTHTIVTHTTHHTHIIITHHTTTHTHTHHHTTHTTTHTHHHTHTHTTHHVTTTTAIAIIAIIIAIVAV0.1660.6661.0000.6660.166PredominantConfigurationThelargerN,thesmallergroupofconfigurationscenteredonthepredominantconfiguration.Homework1:makeanA-ratiosandWx-XplotwhenN=10,100,1000,10000withexcelororigin.A-ratiopredominantconfiguration1000-1000assembly1000harmonicoscillatorssharing1000quantanumberWtot=10600Theareaunderthiscurveisoftheorderof10600,buttheimportantthingisthatalmost100percentofthisareafallsunderacentralpeak–thesharpnessofwhichbecomesevermoreextremewithassembliesoflargerandlargernumbersofunits.predominantconfigurationpredominantconfigurationlocatedat:ddenoteachangefromthepredominantconfigurationtoanotherconfigurationonly“infinitesimally”differentfromit.Whenthenumberofunitsinassembly(N)ishugenumberandcomparablewithNA,dandWareregardsascontinuousvariableandfunction.DifferentialcalculusandmaximumvalueconditionsTheBoltzmannDistributionlawAnisolatedmacroscopicassemblyofNharmonicoscillatorssharelargenumber(Q)energyquantaAssemblyrequirement:identicalbutdistinguishablebyspatiallocationCondition:NandQareconstant.Whichofenormousnumberofconfigurationsassociatedmicrostates(W)canberealizeitsmaximumvalue?Thenumberofmicrostates(W)associatedwithconfigurationa-a,b-b,l-l…z-zTheBoltzmannDistributionlawLetusmakeaminimumchangeintheinitialconfiguration.Thenewconfiguration:TheBoltzmannDistributionlawIfinitialConfiguration(W)havemaximumvalue,hereNandQarehugenumber,then:Therefore,infinitesimalchangeresultsinW=W’NandQishugenumberfarlargerthan1TheBoltzmannDistributionlawConditions:Anisolatedmacroscopicassemblyofharmonicoscillatorswithuniformenergyspacingbetweentheirquantumstates.Descriptionofthepredominantconfiguration:Whataboutquantums

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論