




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遷移學(xué)習(xí)算法研究莊福振中國科學(xué)院計(jì)算技術(shù)研究所2016年4月18日TrainingDataClassifierUnseenData(…,long,T)good!Whatif…2傳統(tǒng)監(jiān)督機(jī)器學(xué)習(xí)(1/2)2023/2/1[fromProf.QiangYang]傳統(tǒng)監(jiān)督機(jī)器學(xué)習(xí)(2/2)32023/2/1傳統(tǒng)監(jiān)督學(xué)習(xí)同源、獨(dú)立同分布兩個(gè)基本假設(shè)標(biāo)注足夠多的訓(xùn)練樣本在實(shí)際應(yīng)用中通常不能滿足!訓(xùn)練集測(cè)試集分類器訓(xùn)練集測(cè)試集分類器遷移學(xué)習(xí)42023/2/1實(shí)際應(yīng)用學(xué)習(xí)場(chǎng)景HP新聞Lenovo新聞不同源、分布不一致人工標(biāo)記訓(xùn)練樣本,費(fèi)時(shí)耗力遷移學(xué)習(xí)運(yùn)用已有的知識(shí)對(duì)不同但相關(guān)領(lǐng)域問題進(jìn)行求解的一種新的機(jī)器學(xué)習(xí)方法放寬了傳統(tǒng)機(jī)器學(xué)習(xí)的兩個(gè)基本假設(shè)遷移學(xué)習(xí)場(chǎng)景(1/4)52023/2/1遷移學(xué)習(xí)場(chǎng)景無處不在遷移知識(shí)遷移知識(shí)圖像分類HP新聞Lenovo新聞新聞網(wǎng)頁分類異構(gòu)特征空間6Theappleisthepomaceousfruitoftheappletree,speciesMalusdomesticaintherosefamilyRosaceae...BananaisthecommonnameforatypeoffruitandalsotheherbaceousplantsofthegenusMusawhichproducethiscommonlyeatenfruit...Training:TextFuture:ImagesApplesBananas遷移學(xué)習(xí)場(chǎng)景(2/4)2023/2/1[fromProf.QiangYang]XinJin,FuzhenZhuang,SinnoJialinPan,ChangyingDu,PingLuo,QingHe:HeterogeneousMulti-taskSemanticFeatureLearningforClassification.CIKM2015:1847-1850.TestTestTrainingTrainingClassifierClassifier72.65%DVDElectronicsElectronics84.60%ElectronicsDrop!遷移學(xué)習(xí)場(chǎng)景(3/4)72023/2/1[fromProf.QiangYang]8DVDElectronicsBookKitchenClothesVideogameFruitHotelTeaImpractical!遷移學(xué)習(xí)場(chǎng)景(4/4)2023/2/1[fromProf.QiangYang]OutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders92023/2/1ConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningforTransferLearning102023/2/1IntroductionManytraditionallearningtechniquesworkwellonlyundertheassumption:Trainingandtestdatafollowthesamedistribution
Training(labeled)ClassifierTest(unlabeled)FromdifferentcompaniesEnterpriseNewsClassification:includingtheclasses“ProductAnnouncement”,“Businessscandal”,“Acquisition”,……Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsDifferentdistributionFail!11ConceptLearningforTransferLearning2023/2/1Motivation(1/3)ExampleAnalysis
Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:12Sharesomecommonwords:announcement,price,performance…indicateConceptLearningforTransferLearning2023/2/1Motivation(2/3)ExampleAnalysis:
HPLaserJet,printer,price,performanceetal.LenovoThinkpad,Thinkcentre,price,performanceetal.Thewordsexpressingthesamewordconceptaredomain-dependent
13ProductProductannouncementwordconceptindicatesTheassociationbetweenwordconceptsanddocumentclassesisdomain-independent
ConceptLearningforTransferLearning2023/2/1Motivation(3/3)14Furtherobservations:Differentdomainsmayusesamekeywordstoexpressthesameconcept(denotedasidenticalconcept)Differentdomainsmayalsousedifferentkeywordstoexpressthesameconcept(denotedasalikeconcept)Differentdomainsmayalsohavetheirowndistinctconcepts(denotedasdistinctconcept)TheidenticalandalikeconceptsareusedasthesharedconceptsforknowledgetransferWetrytomodelthesethreekindsofconceptssimultaneouslyfortransferlearningtextclassificationConceptLearningforTransferLearning2023/2/1PreliminaryKnowledgeBasicformulaofmatrixtri-factorization:wheretheinputXistheword-documentco-occurrencematrix
denotesconceptinformation,mayvaryindifferentdomainsFdenotesthedocumentclassificationinformation
indeedistheassociationbetweenwordconceptsanddocumentclasses,mayretainstablecrossdomainsGS15ConceptLearningforTransferLearning2023/2/1Previousmethod-MTrickinSDM2010(1/2)SketchmapofMTrick
SourcedomainXs
FsGsFtGtTargetdomainXtSKnowledgeTransfer16ConceptLearningforTransferLearning2023/2/1Consideringthealikeconcepts MTrick(2/2)OptimizationproblemforMTrickG0isthesupervisioninformationtheassociationSissharedasbridgetotransferknowledge17ConceptLearningforTransferLearningDualTransferLearning(Longetal.,SDM2012),consideringidenticalandalikeconcepts2023/2/1TriplexTransferLearning(TriTL)(1/5)Furtherdividethewordconceptsintothreekinds:
18F1,identicalconcepts;F2,alikeconcepts;F3,distinctconceptsInput:ssourcedomainXr(1≤r≤s)withlabelinformation,ttargetdomainXr(s+1≤r≤s+t)WeproposeTriplexTransferLearningframeworkbasedonmatrixtri-factorization(TriTLforshort)
2023/2/1ConceptLearningforTransferLearningF1,S1andS2
aresharedasthebridgeforknowledgetransferacrossdomainsThesupervisioninformationisintegratedbyGr(1≤r≤s)insourcedomainsTriTL(2/5)OptimizationProblem
192023/2/1ConceptLearningforTransferLearningTriTL(3/5)Wedevelopanalternativelyiterativealgorithmtoderivethesolutionandtheoreticallyanalyzeitsconvergence 202023/2/1ConceptLearningforTransferLearningTriTL(4/5)Classificationontargetdomains When1≤r≤s,Grcontainsthelabelinformation,soweremainitunchangedduringtheiterations
whenxibelongstoclassj,thenGr(i,j)=1,elseGr(i,j)=0Aftertheiteration,weobtaintheoutputGr(s+1≤r≤s+t),thenwecanperformclassificationaccordingtoGr212023/2/1ConceptLearningforTransferLearningTriTL(5/5)AnalysisofAlgorithmConvergence Accordingtothemethodologyofconvergenceanalysisinthetwoworks[Leeetal.,NIPS’01]and[Dingetal.,KDD’06],thefollowingtheoremholds.Theorem(Convergence):Aftereachroundofcalculatingtheiterativeformulas,theobjectivefunctionintheoptimizationproblemwillconvergemonotonically.222023/2/1ConceptLearningforTransferLearning232023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.miscrecscicomptalkDataPreparation(1/3)20Newsgroups Fourtopcategories,eachtopcategorycontainsfoursub-categories SentimentClassification,fourdomains:books,dvd,electronics,kitchenRandomlyselecttwodomainsassources,andtherestastargets,then6problemscanbeconstructed
ConceptLearningforTransferLearning242023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypySourcedomainautosspaceTargetdomainFortheclassificationproblemwithonesourcedomainandonetargetdomain,wecanconstruct144()
problemsDataPreparation(2/3)Constructclassificationtasks(TraditionalTL)ConceptLearningforTransferLearning252023/2/1Constructnewtransferlearningproblemsrec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypyautosspacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.misccomptalkautosgraphicsMoredistinctconceptsmayexist!DataPreparation(3/3)SourcedomainTargetdomainConceptLearningforTransferLearning262023/2/1ComparedAlgorithmsConceptLearningforTransferLearningTraditionallearningAlgorithmsSupervisedLearning:LogisticRegression(LR)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferlearningMethods:CoCC[Daietal.,KDD’07],DTL[Longetal.,SDM’12]Classificationaccuracyisusedastheevaluationmeasure272023/2/1ExperimentalResults(1/3)ConceptLearningforTransferLearningSorttheproblemswiththeaccuracyofLRDegreeoftransferdifficultyeasierGenerally,thelowerofaccuracyofLRcanindicatethehardertotransfer,whilethehigheronesindicatetheeasiertotransferharder282023/2/1ExperimentalResults(2/3)ConceptLearningforTransferLearningComparisonsamongTriTL,DTL,MTrick,CoCC,TSVM,SVMandLRondatasetrecvs.sci(144problems)TriTLcanperformwelleventheaccuracyofLRislowerthan65%292023/2/1ExperimentalResults(3/3)ConceptLearningforTransferLearningResultsonnewtransferlearningproblems,weonlyselecttheproblems,whoseaccuraciesofLRarebetween(50%,55%](Onlyslightlybetterthanrandomclassification,thustheymightbemuchmoredifficult).Weobtain65problemsTriTLalsooutperformsallthebaselinesConclusionsExplicitlydefinethreekindsofwordconcepts,i.e.,identicalconcept,alikeconceptanddistinctconceptProposeageneraltransferlearningframeworkbasedonnonnegativematrixtri-factorization,whichsimultaneouslymodelthethreekindsofconcepts(TriTL)Extensiveexperimentsshowtheeffectivenessoftheproposedapproach,especiallywhenthedistinctconceptsmayexist302023/2/1ConceptLearningforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningConceptLearningforTransferLearning312023/2/1322023/2/1MotivationConceptLearningforTransferLearningProductannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:Sharesomecommonwords:announcement,price,performance…indicateRetrospecttheexample
332023/2/1SomenotationsddocumentydocumentclasszwordconceptSomedefinitionse.g.,p(price|Product),p(LaserJet|Product,)wwordrdomaine.g,p(Product|Productannouncement)PreliminaryKnowledge(1/3)ConceptLearningforTransferLearning342023/2/1ConceptLearningforTransferLearningPreliminaryKnowledge(2/3)ProductLaserJet,printer,announcement,price,ThinkPad,ThinkCentre,announcement,priceProductannouncementp(w|z,r1)p(w|z,r2)p(z|y)p(w|z,r1)≠p(w|z,r2)E.g.,p(LaserJet|Product,HP)≠p(LaserJet|Product,Lenovo)p(z|y,r1)=p(z|y,r2)E.g.,p(Product|Productannoucement,HP)=p(Product|Productannoucement,Lenovo)Alikeconcept352023/2/1DualPLSA
(D-PLSA)Jointprobabilityoverallvariablesp(w,d)=p(w|z)p(z|y)p(d|y)p(y)GivendatadomainX,theproblemofmaximumloglikelihoodislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesalltheparametersp(w|z),p(z|y),p(d|y),p(y).Z
denotesallthelatentvariablesPreliminaryKnowledge(3/3)TheproposedtransferlearningalgorithmbasedonD-PLSA,denotedasHIDCConceptLearningforTransferLearning362023/2/1Identicalconceptp(w|za)p(za|y)AlikeconceptTheextensionandintensionaredomainindependentp(w|zb,r)p(zb|y)HIDC(1/3)Theextensionisdomaindependent,whiletheintensionisdomainindependentConceptLearningforTransferLearning372023/2/1Distinctconceptp(w|zc,r)p(zc|y,r)ThejointprobabilitiesofthesethreegraphicalmodelsHIDC(2/3)TheextensionandintensionarebothdomaindependentConceptLearningforTransferLearning382023/2/1Givens+t
datadomainsX={X1,…,Xs,Xs+1,…,Xs+t},withoutlossofgenerality,thefirstsdomainsaresourcedomains,andthelefttdomainsaretargetdomainsConsiderthethreekindsofconcepts:TheLog
likelihoodfunctionislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesallparametersp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r).HIDC(3/3)ConceptLearningforTransferLearning392023/2/1UsetheEMalgorithmtoderivethesolutionsEStep:ModelSolution(1/4)ConceptLearningforTransferLearning402023/2/1M
Step:ModelSolution(2/4)ConceptLearningforTransferLearning412023/2/1Semi-supervisedEMalgorithm:whenrisfromsourcedomains,thelabeledinformationp(d|y,r)isknownandp(y|r)
canbeinferedp(d|y,r)=1/ny,r,ifdbelongsyindomainr,ny,risthenumberofdocumentsinclassyindomainr,else
p(d|y,c)=0p(y|r)=ny,r/nr
,nr
isthenumberofdocumentsindomainr
whenrisfromsourcedomains,p(d|y,r)andp(y|r)keepunchangedduringtheiterations,whichsupervisetheoptimizingprocessModelSolution(3/4)ConceptLearningforTransferLearning422023/2/1ClassificationfortargetdomainsAfterweobtainthefinalsolutionsofp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r)Wecancomputetheconditionalprobabilities:
ThenthefinalpredictionisDuringtheiterations,alldomainssharep(w|za),p(za|y),p(zb|y),
whichactasthebridgeforknowledgetransferModelSolution(4/4)ConceptLearningforTransferLearning432023/2/1BaselinesComparedAlgorithmsSupervisedLearning:LogisticRegression(LG)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferLearning:CoCC[Daietal.,KDD’07]CD-PLSA[Zhuangetal.,CIKM’10]DTL[Longetal.,SDM’12]OurMethodsHIDCMeasure:classificationaccuracyConceptLearningforTransferLearning442023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(1/5)ConceptLearningforTransferLearning452023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(2/5)ConceptLearningforTransferLearning462023/2/1ExperimentalResults(3/5)ConceptLearningforTransferLearning472023/2/1Sourcedomain:S
(rec.autos,
sci.space),Targetdomain:T(rec.sport.hockey,talk.politics.mideast)STSTDistinctconceptSTAlikeconceptExperimentalResults(4/5)ConceptLearningforTransferLearning482023/2/1ExperimentalResults(5/5)ConceptLearningforTransferLearningIndeed,theproposedprobabilisticmethodHIDCisalsobetterthanTriTLThismayduetothereasonthatthereismoreclearerprobabilisticexplanationofHIDCp1(z,y)=p2(z,y)orp1(z|y)=p2(z|y)whichisbetter?p(z|y)p(y)492023/2/1[1]FuzhenZhuang,PingLuo,HuiXiong,QingHe,YuhongXiong,ZhongzhiShi:ExploitingAssociationsbetweenWordClustersandDocumentClassesforCross-DomainTextCategorization.SDM2010,pp.13-24.[2]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:CollaborativeDual-PLSA:miningdistinctionandcommonalityacrossmultipledomainsfortextclassification.CIKM2010,pp.359-368.[3]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:MiningDistinctionandCommonalityacrossMultipleDomainsUsingGenerativeModelforTextClassification.IEEETrans.Knowl.DataEng.24(11):2025-2039(2012).[3]FuzhenZhuang,PingLuo,ChangyingDu,QingHe,ZhongzhiShi:Triplextransferlearning:exploitingbothsharedanddistinctconceptsfortextclassification.WSDM2013,pp.425-434.[4]FuzhenZhuang,PingLuo,PeifengYin,QingHe,ZhongzhiShi.:ConceptLearningforCross-domainTextClassification:aGeneralProbabilisticFramework.IJCAI2013,pp.1960-1966.ReferencesConceptLearningforTransferLearningOutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders502023/2/1TransferLearningfromMultipleSourceswithAutoencoderRegularization512023/2/1TransferLearningUsingAuto-encoders52Motivation(1/2)TransferlearningbasedonoriginalfeaturespacemayfailtoachievehighperformanceonTargetdomaindataWeconsidertheautoencodertechniquetocollaborativelyfindanewrepresentationofbothsourceandtargetdomaindataElectronicsVideoGames
Compact;easytooperate;verygoodpicture,excited
aboutthequality;lookssharp!Averygood
game!Itisactionpacked
andfullofexcitement.Iamverymuchhooked
onthisgame.522023/2/1TransferLearningUsingAuto-encodersPreviousmethodsoftentransferfromonesourcedomaintoonetargetdomainWeconsidertheconsensusregularizedframeworkforlearningfrommultiplesourcedomainsDVDBookKitchenElectronicsWeproposeatransferlearningframeworkofconsensusregularizationautoencoderstolearnfrommultiplesourcesMotivation(2/2)532023/2/1TransferLearningUsingAuto-encodersAutoencoderNeuralNetworkMinimizingthereconstructionerrortoderivethesolution:whereh,garenonlinearactivationfunction,e.g.,Sigmoidfunction,forencodinganddecoding542023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(1/3)Example:three-classclassificationproblem,threeclassifierspredictinstancesf1f2f3f1f2f3x1111x2333x3222x4231x5313x6123ConstraintSource1:D1Source2:D2Source3:D3552023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(2/3)Example:three-classclassificationproblem,predictiononinstancexMinimalentropy,MaximalConsensusMaximalentropy,MinimalConsensusEntropybasedConsensusMeasure(Luoetal.,CIKM’08)θiistheparametervectorofclassifieri,Cistheclasslabelset562023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(3/3)Forsimplicity,theconsensusmeasureforbinaryclassificationcanberewrittenasInthiswork,weimposetheconsensusregularizationtoautoencoders,andtrytoimprovethelearningperformancefrommultiplesourcedomainssincetheireffectsonmakingthepredictionconsensusaresimilar.572023/2/1TransferLearningUsingAuto-encodersSomeNotations
SourcedomainsGivenrsourcedomains:,i.e.,
,.
ThefirstcorrespondingdatamatrixisTargetdomainThecorrespondingdatamatrixis
Thegoalistotrainaclassifier
ftomakeprecisepredictionson.582023/2/1TransferLearningUsingAuto-encodersFrameworkofCRAThedatafromallsourceandtargetdomainssharethesameencodinganddecodingweightsTheclassifierstrainedfromthenewrepresentationareregularizedtopredictthesameresultsontargetdomaindata592023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ReconstructionError602023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ConsensusRegularization612023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ThetotallossofsourceclassifiersoverthecorrespondingsourcedomaindatawiththehiddenrepresentationWeighdecayterm622023/2/1TransferLearningUsingAuto-encodersTheSolutionofCRAWeusethegradientdescentmethodtoderivethesolutionofallparameters?isthelearningrate.ThetimecomplexityisO(rnmk)Theoutput:theencodinganddecodingparameters,andsourceclassifierswithlatentrepresentation.632023/2/1TransferLearningUsingAuto-encodersTargetClassifierConstructionTwoScheme:Trainthesourceclassifiersbasedonandcombinethemas,whereCombineallthesourcedomaindataasZSandtrainaunifiedclassifierusinganysupervisedlearningalgorithms,e.g.,SVM,LogisticRegression(LR).ThetwoaccuraciesaredenotedasCRAvandCRAu,respectively642023/2/1TransferLearningUsingAuto-encodersDataSets-(1/2)ImageData(fromLuoetal.,CIKM08)(Someexamples)AB
A1A2A3A4B1B2B3B4Threesources:A1B1A2B2A3B3Targetdomain:A4B4Totally,96()3-sourcevs1-targetdomain(3vs1)probleminstancescanbeconstructedfortheexperimentalevaluation652023/2/1TransferLearningUsingAuto-encodersDataSets-(2/2)SentimentClassification(fromBlitzeretal.,ACL07)Four3-sourcevs1-targetdomainclassificationproblemsareconstructedDVDBookKitchenElectronicsTheaccuracyontargetdomaindataisusedastheevaluationmeasureBothSVMandLRareusedtotrainclassifiersonthenewrepresentation662023/2/1TransferLearningUsingAuto-encodersAllComparedAlgorithmsBaselinesSupervisedlearningonoriginalfeatures:SVM
[Joachims,ICML’99],LogisticRegression(LR)[Davidetal.,00]Embeddingmethodbasedonautoencoders(EAER)[Yuetal.,ECML’13]MarginalizedStackedDenoisingAutoencoders
(mSDA)[Chenetal.,ICML’12]TransferComponentAnalysis(TCA)[Panetal.,TNN’11]Transferlearningfrommultiplesources(CCR3)(Luoetal.,CIKM’08)Ourmethod:CRAvandCRAuForthemethodswhichcannothandlemultiplesources,wetraintheclassifiersfromeachsourcedomainandmergeddataofallsources(r+1accuracies).Finally,maximal,meanandminimalvaluesarereported.672023/2/1TransferLearningUsingAuto-encoders68ExperimentalResults-(1/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson96imageclassificationproblems69ExperimentalResults-(2/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson4sentimentclassificationproblemsConclusionsThewellknownrepresentationlearningtechniqueautoencoderisconsidered,andweformalizetheautoencodersandconsensusregularizationintoaunifiedoptimizationframeworkExtensivecomparisonexperimentsonimageandsentimentdataareconductedtoshowtheeffectivenessoftheproposealgorithm702023/2/1TransferLearningUsingAuto-encodersSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders712023/2/1TransferLearningUsingAuto-encodersAutoencoderisanunsupervisedfeaturelearningalgorithm,whichcannoteffectivelymakeuseofthelabelinformationLimitationofBasicAutoencoderContributionofThisWorkWeextendAutoencodertomulti-layerstructure,andincorporatethelabelasonelayerMotivation722023/2/1TransferLearningUsingAuto-encoders源領(lǐng)域和目標(biāo)領(lǐng)域共享編碼和解碼權(quán)重利用KL距離對(duì)隱層空間進(jìn)行約束利用多類回歸模型對(duì)類標(biāo)層進(jìn)行約束FrameworkofTLDA(1/5)732023/2/1TransferLearningUsingAuto-encoders目標(biāo)是最小化重構(gòu)誤差:DeepAutoencoderFrameworkofTLDA(2/5)742023/2/1TransferLearningUsingAuto-encodersKL距離KL距離衡量的是兩個(gè)概率分布的差異情況,計(jì)算公式如下:以上KL距離并不滿足傳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南測(cè)繪職業(yè)學(xué)院《社會(huì)體育運(yùn)動(dòng)技能與指導(dǎo)(瑜伽)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西財(cái)經(jīng)學(xué)院《流域管理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉安職業(yè)技術(shù)學(xué)院《群落生態(tài)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶城市科技學(xué)院《安全行為學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆農(nóng)業(yè)大學(xué)《醫(yī)學(xué)影像診斷學(xué)1》2023-2024學(xué)年第二學(xué)期期末試卷
- 海南大學(xué)《中國古文名篇導(dǎo)讀》2023-2024學(xué)年第二學(xué)期期末試卷
- 安陽幼兒師范高等??茖W(xué)?!秾W(xué)位論文選題與設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 公章申請(qǐng)流程
- 抽排水施工方案
- 2025年鄉(xiāng)村醫(yī)生崗位理論知識(shí)考試模擬試題及答案(共100題)
- 內(nèi)蒙古機(jī)電職業(yè)技術(shù)學(xué)院?jiǎn)为?dú)招生(機(jī)電類)考試題庫大全-下(判斷題匯總)
- 抗菌藥物考核試題及答案
- 2023水下錄像作業(yè)安全要求
- 銀行消保培訓(xùn)課件
- 酒店重大事故隱患排查整治方案
- 水泥攪拌樁施工重點(diǎn)、難點(diǎn)分析及應(yīng)對(duì)措施
- 貴州民族大學(xué)輔導(dǎo)員考試試題2023
- 2023年陜西公務(wù)員申論考試真題及答案-B卷
- 建筑施工安全風(fēng)險(xiǎn)辨識(shí)分級(jí)管控指南
- 九年級(jí)化學(xué)下冊(cè)第9單元溶液課題3溶液的濃度第二課時(shí)化學(xué)反應(yīng)中的溶質(zhì)質(zhì)量分?jǐn)?shù)的計(jì)算作業(yè)講義新人教版
- 信息化武器裝備智慧樹知到答案章節(jié)測(cè)試2023年中北大學(xué)
評(píng)論
0/150
提交評(píng)論