2022-2023學年山西省晉中市四校高三下學期一??荚嚁?shù)學試題含解析_第1頁
2022-2023學年山西省晉中市四校高三下學期一??荚嚁?shù)學試題含解析_第2頁
2022-2023學年山西省晉中市四校高三下學期一??荚嚁?shù)學試題含解析_第3頁
2022-2023學年山西省晉中市四校高三下學期一模考試數(shù)學試題含解析_第4頁
2022-2023學年山西省晉中市四校高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.272.已知復數(shù)和復數(shù),則為A. B. C. D.3.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]4.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件5.記單調遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.6.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.7.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.8.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.9.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.10.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.11.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.12.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負責該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若函數(shù)在處的切線與圓存在公共點,則實數(shù)的取值范圍為_____.14.在的二項展開式中,所有項的系數(shù)的和為________15.的展開式中項的系數(shù)為_______.16.設全集,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.18.(12分)已知,,求證:(1);(2).19.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.20.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.21.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.22.(10分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.2、C【解析】

利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.3、B【解析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.4、A【解析】

首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.5、C【解析】

先利用等比數(shù)列的性質得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.6、A【解析】

令,進而求得,再轉化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關鍵,屬于中檔題.7、C【解析】

根據(jù)函數(shù)的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質,根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調性,屬于基礎題.8、B【解析】

構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.9、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.10、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.11、D【解析】

建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構造不等關系求得最值.12、C【解析】

先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用導數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導數(shù)的幾何意義求解切線方程的問題,同時也考查了根據(jù)直線與圓的位置關系求解參數(shù)范圍的問題,屬于基礎題.14、1【解析】

設,令,的值即為所有項的系數(shù)之和?!驹斀狻吭O,令,所有項的系數(shù)的和為?!军c睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。15、40【解析】

根據(jù)二項定理展開式,求得r的值,進而求得系數(shù).【詳解】根據(jù)二項定理展開式的通項式得所以,解得所以系數(shù)【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.16、【解析】

先求出集合,,然后根據(jù)交集、補集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.【點睛】本題主要考查集合的交集、補集運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據(jù)根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數(shù)關系解決相交弦問題,考查計算求解能力,屬于中檔題.18、(1)見解析;(2)見解析.【解析】

(1)結合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結論.【詳解】(1)∵,∴,當且僅當a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當且僅當a=b=c等號成立∴.【點睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.19、(1),;(2).【解析】

(1)根據(jù)題意同時利用等差、等比數(shù)列的通項公式即可求得數(shù)列和的通項公式;(2)求出數(shù)列的通項公式,再利用錯位相減法即可求得數(shù)列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設等比數(shù)列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數(shù)列的前2020項的和設③,則④,由③④得:,所以,所以.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉化能力及綜合運用數(shù)學知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學運算.是中檔題.20、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.21、(1).(2)1【解析】

(1)先根據(jù)題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN=λ,設N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因為∠BAD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因為M為PC的中點,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因為AN=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論