2022-2023學(xué)年汕頭市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁
2022-2023學(xué)年汕頭市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁
2022-2023學(xué)年汕頭市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁
2022-2023學(xué)年汕頭市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁
2022-2023學(xué)年汕頭市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.2.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或4.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知集合,則=A. B. C. D.6.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.7.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.8.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)9.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.11.已知變量,滿足不等式組,則的最小值為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)為____________.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____16.函數(shù)在的零點(diǎn)個數(shù)為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對使得且的概率為.18.(12分)已知橢圓C的離心率為且經(jīng)過點(diǎn)(1)求橢圓C的方程;(2)過點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.19.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.20.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).21.(12分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.22.(10分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由模長公式求解即可.【詳解】,當(dāng)時(shí)取等號,所以本題答案為B.【點(diǎn)睛】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.2、C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.3、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.4、A【解析】

根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.5、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.6、B【解析】

由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.8、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.9、C【解析】

討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.10、B【解析】

利用復(fù)數(shù)的除法運(yùn)算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.11、B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.12、A【解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、16【解析】

要得到的系數(shù),只要求出二項(xiàng)式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點(diǎn)睛】此題考查二項(xiàng)式的系數(shù),屬于基礎(chǔ)題.14、1【解析】

按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.15、【解析】

先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)椋?,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問題,極值點(diǎn)為導(dǎo)數(shù)的變號零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.16、1【解析】

本問題轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個函數(shù)只有一個交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)16;(2)115.【解析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個;當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對即可.【詳解】解:(1)三個數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計(jì)數(shù)原理得:為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項(xiàng)共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計(jì)算公式能得到:,時(shí),應(yīng)滿足,,共個,時(shí),應(yīng)滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設(shè),則由于為正整數(shù)知必為正整數(shù),,,化簡上式關(guān)系式可以知道:,均為偶數(shù),設(shè),則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗(yàn):符合題意,共有個,綜上所述:共有個數(shù)對符合題意.【點(diǎn)睛】本題主要考查了排列組合的基本方法,同時(shí)也考查了組合數(shù)的運(yùn)算以及整數(shù)的分析方法等,需要根據(jù)題意18、(1)(2)【解析】

(1)根據(jù)橢圓的離心率、橢圓上點(diǎn)的坐標(biāo)以及列方程,由此求得,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點(diǎn)的坐標(biāo),將的坐標(biāo)代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點(diǎn)在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點(diǎn)都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗(yàn)滿足,故直線的方程為.【點(diǎn)睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點(diǎn)的坐標(biāo)求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2)【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因?yàn)?,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一般.20、(1),.(2),【解析】

(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡,得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時(shí),在向量的n個坐標(biāo)中,要使得范數(shù)為奇數(shù),則0的個數(shù)一定是奇數(shù),所以可按照含0個數(shù)為:1,3,…,進(jìn)行討論:的n個坐標(biāo)中含1個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為;的n個坐標(biāo)中含3個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為;的n個坐標(biāo)中含個0,其余坐標(biāo)為1或,共有個,每個的范數(shù)為1;所以,.因?yàn)椋?,②得,,所?解法1:因?yàn)?,所?.解法2:得,.又因?yàn)?,所?【點(diǎn)睛】本題考查了數(shù)列和組合,是一道較難的綜合題.21、(1);(2)【解析】

(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論