版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的圖象大致為()A. B. C. D.2.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.3.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)4.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.5.在平行四邊形中,若則()A. B. C. D.6.的展開式中的系數(shù)為()A.5 B.10 C.20 D.307.從拋物線上一點(點在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點為,則直線的斜率為()A. B. C. D.8.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)9.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.10.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.11.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.一個幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示梯子結(jié)構(gòu)的點數(shù)依次構(gòu)成數(shù)列,則________.14.平面直角坐標(biāo)系中,O為坐標(biāo)原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為15.已知向量,,滿足,,,則的取值范圍為_________.16.用數(shù)字、、、、、組成無重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個數(shù)字奇偶性不同的有_____個.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).18.(12分)已知奇函數(shù)的定義域為,且當(dāng)時,.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個零點,求實數(shù)的取值范圍.19.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.20.(12分)在直角坐標(biāo)系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.21.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值22.(10分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當(dāng)線段的長度最小時,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點對稱,排除選項A,B;當(dāng)時,,,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.2、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.3、D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補(bǔ)集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.4、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.5、C【解析】
由,,利用平面向量的數(shù)量積運算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).6、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.7、A【解析】
根據(jù)拋物線的性質(zhì)求出點坐標(biāo)和焦點坐標(biāo),進(jìn)而求出點的坐標(biāo),代入斜率公式即可求解.【詳解】設(shè)點的坐標(biāo)為,由題意知,焦點,準(zhǔn)線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標(biāo)為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質(zhì),考查運算求解能力;屬于基礎(chǔ)題.8、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.9、A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.10、C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.11、A【解析】
設(shè)成立;反之,滿足,但,故選A.12、C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.14、【解析】
根據(jù)向量共線定理得A,B,C三點共線,再根據(jù)點斜式得結(jié)果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.15、【解析】
設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設(shè),,,,如圖所示:因為,,,所以A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點睛】本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.16、【解析】
對首位數(shù)的奇偶進(jìn)行分類討論,利用分步乘法計數(shù)原理和分類加法計數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個數(shù)位上的數(shù)都是奇數(shù),其余三個數(shù)位上的數(shù)為偶數(shù),此時,符號條件的位自然數(shù)個數(shù)為個;②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個數(shù)位上,第二、四、六個數(shù)位上的數(shù)為奇數(shù),此時,符合條件的位自然數(shù)個數(shù)為個.綜上所述,符合條件的位自然數(shù)個數(shù)為個.故答案為:.【點睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計數(shù)和分類加法計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當(dāng)時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當(dāng)時,,,∴,∴在恒成立,∴在無零點.③當(dāng)時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.18、(1);(2)【解析】
(1)根據(jù)奇函數(shù)定義,可知;令則,結(jié)合奇函數(shù)定義即可求得時的解析式,進(jìn)而得函數(shù)的解析式;(2)根據(jù)零點定義,可得,由函數(shù)圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數(shù)為奇函數(shù),且,故;當(dāng)時,,,則;故.(2)令,解得,畫出函數(shù)關(guān)系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯(lián)立,化簡可得,令,即,解得,所以實數(shù)的取值范圍為.【點睛】本題考查了根據(jù)函數(shù)奇偶性求解析式,分段函數(shù)圖像畫法,由函數(shù)零點個數(shù)求參數(shù)的取值范圍應(yīng)用,數(shù)形結(jié)合的應(yīng)用,屬于中檔題.19、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點,,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.20、(1);(2).【解析】
(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【詳解】(1)設(shè),由題意可得.因為是的中位線,且,所以,即,因為進(jìn)而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當(dāng)直線斜率為時,顯然不成立.直線斜率不為時,設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.21、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時,;當(dāng)時,設(shè)遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.22、(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因為拋物線的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Windows Server 2022活動目錄管理實踐( 第2版 微課版)-課件項目7 修改域用戶的賬戶策略
- 魯教版八年級數(shù)學(xué)上冊第五章平行四邊形素養(yǎng)綜合檢測課件
- 牛津英語七年級語法單項練習(xí)
- DB34T 4925-2024養(yǎng)老機(jī)構(gòu)服務(wù)評價工作指南
- 內(nèi)蒙古包頭市青山區(qū)重點中學(xué)2024屆中考數(shù)學(xué)模擬試題含解析
- 八年級生物期中模擬卷(全解全析)(湖南專用)
- 學(xué)習(xí)的“永動機(jī)”課件-2024-2025學(xué)年高二上學(xué)期心理健康教育課
- 湘教版科學(xué)三年級下冊教案全冊
- 分?jǐn)?shù)的意義和性質(zhì)達(dá)標(biāo)訓(xùn)練
- 時分秒教案課件
- 大學(xué)生職業(yè)規(guī)劃大賽成長賽道參賽作品
- 自來水公司招聘考試題庫
- 小學(xué)生數(shù)學(xué)草稿本使用養(yǎng)成小策略 論文
- 《4.1數(shù)列的概念》教案、導(dǎo)學(xué)案與同步練習(xí)
- 咨詢服務(wù)協(xié)議中英文模板完整版doc(二篇)
- 《從九一八事變到西安事變》【精準(zhǔn)教學(xué)】
- 住房公積金業(yè)務(wù)培訓(xùn)課件
- 贛南臍橙直播推廣方案
- 大班傳統(tǒng)美食教案
- 重癥監(jiān)護(hù)病房醫(yī)院感染預(yù)防與控制規(guī)范
- 鍍鋅圍欄施工方案
評論
0/150
提交評論