2023屆四川省威遠(yuǎn)縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2023屆四川省威遠(yuǎn)縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2023屆四川省威遠(yuǎn)縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2023屆四川省威遠(yuǎn)縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2023屆四川省威遠(yuǎn)縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖像如圖所示,下面結(jié)論:①;②;③函數(shù)的最小值為;④當(dāng)時(shí),;⑤當(dāng)時(shí),(、分別是、對應(yīng)的函數(shù)值).正確的個數(shù)為()A. B. C. D.2.關(guān)于的一元二次方程有一個根為,則的值應(yīng)為()A. B. C.或 D.3.如圖,在△ABC中,∠BAC=65°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'的度數(shù)為()A.65° B.50° C.80° D.130°4.如圖,在△ABC中,∠ACB=90°,AC=3,BC=1.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C的對應(yīng)點(diǎn)C'在線段AB上.點(diǎn)B'是點(diǎn)B的對應(yīng)點(diǎn),連接B'B,則線段B'B的長為()A.2 B.3 C.1 D.5.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A.4π B.3π C.2π+4 D.3π+46.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④7.下列手機(jī)應(yīng)用圖標(biāo)中,是中心對稱圖形的是()A. B. C. D.8.如圖1,圖2是甲、乙兩位同學(xué)設(shè)置的“數(shù)值轉(zhuǎn)換機(jī)”的示意圖,若輸入的,則輸出的結(jié)果分別為()A.9,23 B.23,9 C.9,29 D.29,99.在小孔成像問題中,如圖所示,若為O到AB的距離是18cm,O到CD的距離是6cm,則像CD的長是物體AB長的()A. B. C.2倍 D.3倍10.拋物線y=ax2+bx+c與直線y=ax+c(a≠0)在同一直角坐標(biāo)系中的圖象可能是()A. B.C. D.11.式子有意義的的取值范圍()A.x≥4 B.x≥2 C.x≥0且x≠4 D.x≥0且x≠212.如圖是正方體的一種平面展開圖,它的每個面上都有一個漢字,那么在原正方體的表面上,與漢字“治”相對的面上的漢字是()A.全 B.面 C.依 D.法二、填空題(每題4分,共24分)13.如圖,有一斜坡,坡頂離地面的高度為,斜坡的傾斜角是,若,則此斜坡的為____m.14.在平面直角坐標(biāo)系中,點(diǎn)P(5,﹣3)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是___.15.在一個不透明的口袋中,裝有1個紅球若干個白球,它們除顏色外都相同,從中任意摸出一個球,摸到紅球的概率為,則此口袋中白球的個數(shù)為____________.16.用一張半徑為14cm的扇形紙片做一個如圖所示的圓錐形小丑帽子側(cè)面(接縫忽略不計(jì)),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是________cm1.17.已知一扇形,半徑為6,圓心角為120°,則所對的弧長為___.18.已知,關(guān)于原點(diǎn)對稱,則__________.三、解答題(共78分)19.(8分)如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.(1)求證:BE=CE;(2)若BC=8,AD=10,求四邊形BFCD的面積.20.(8分)在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式——利用函數(shù)圖象研其性質(zhì)——運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程.如圖,在平面直角坐標(biāo)系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關(guān)系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;(3)請根據(jù)所學(xué)知識并結(jié)合上述信息擬合出函數(shù)的解折式,并求出與的交點(diǎn)坐標(biāo).21.(8分)已知:內(nèi)接于⊙,連接并延長交于點(diǎn),交⊙于點(diǎn),滿足.(1)如圖1,求證:;(2)如圖2,連接,點(diǎn)為弧上一點(diǎn),連接,=,過點(diǎn)作,垂足為點(diǎn),求證:;(3)如圖3,在(2)的條件下,點(diǎn)為上一點(diǎn),分別連接,,過點(diǎn)作,交⊙于點(diǎn),,,連接,求的長.22.(10分)如圖,在直角坐標(biāo)系xOy中,直線與雙曲線相交于A(-1,a)、B兩點(diǎn),BC⊥x軸,垂足為C,△AOC的面積是1.(1)求m、n的值;(2)求直線AC的解析式.23.(10分)某市為調(diào)查市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“:自行車,:電動車,:公交車,:家庭汽車,:其他”五個選項(xiàng)中選擇最常用的一項(xiàng).將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題.(1)本次調(diào)查中,一共調(diào)查了名市民,其中“:公交車”選項(xiàng)的有人;扇形統(tǒng)計(jì)圖中,項(xiàng)對應(yīng)的扇形圓心角是度;(2)若甲、乙兩人上班時(shí)從、、、四種交通工具中隨機(jī)選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.24.(10分)化簡求值:,其中25.(12分)如圖,直線y=ax+b與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C(6,m).(1)求直線和反比例函數(shù)的表達(dá)式;(2)連接OC,在x軸上找一點(diǎn)P,使△OPC是以O(shè)C為腰的等腰三角形,請求出點(diǎn)P的坐標(biāo);(3)結(jié)合圖象,請直接寫出不等式≥ax+b的解集.26.已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運(yùn)動,⊙O與邊CD僅有一個公共點(diǎn)E.(1)如圖1,若圓心O在線段MD上,點(diǎn)M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關(guān)系,并說明理由;(2)如圖2,⊙O與邊AD交于點(diǎn)F,連接MF,過點(diǎn)M作MF的垂線與邊CD交于點(diǎn)G,若,設(shè)點(diǎn)O與點(diǎn)M之間的距離為,EG=,當(dāng)時(shí),求的函數(shù)解析式.

參考答案一、選擇題(每題4分,共48分)1、C【分析】由拋物線開口方向可得到a>0;由拋物線過原點(diǎn)得c=0;根據(jù)頂點(diǎn)坐標(biāo)可得到函數(shù)的最小值為-3;根據(jù)當(dāng)x<0時(shí),拋物線都在x軸上方,可得y>0;由圖示知:0<x<2,y隨x的增大而減??;【詳解】解:①由函數(shù)圖象開口向上可知,,故此選項(xiàng)正確;②由函數(shù)的圖像與軸的交點(diǎn)在可知,,故此選項(xiàng)正確;③由函數(shù)的圖像的頂點(diǎn)在可知,函數(shù)的最小值為,故此選項(xiàng)正確;④因?yàn)楹瘮?shù)的對稱軸為,與軸的一個交點(diǎn)為,則與軸的另一個交點(diǎn)為,所以當(dāng)時(shí),,故此選項(xiàng)正確;⑤由圖像可知,當(dāng)時(shí),隨著的值增大而減小,所以當(dāng)時(shí),,故此選項(xiàng)錯誤;其中正確信息的有①②③④.故選:C.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=,;拋物線與y軸的交點(diǎn)坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點(diǎn);當(dāng)b2-4ac=0,拋物線與x軸有一個交點(diǎn);當(dāng)b2-4ac<0,拋物線與x軸沒有交點(diǎn).2、B【分析】把x=0代入方程可得到關(guān)于m的方程,解方程可得m的值,根據(jù)一元二次方程的定義m-2≠0,即可得答案.【詳解】關(guān)于的一元二次方程有一個根為,且,解得,.故選B.【點(diǎn)睛】本題考查一元二次方程的解及一元二次方程的定義,使等式兩邊成立的未知數(shù)的值叫做方程的解,明確一元二次方程的二次項(xiàng)系數(shù)不為0是解題關(guān)鍵.3、B【分析】根據(jù)平行線的性質(zhì)可得,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,根據(jù)等邊對等角可得,利用三角形的內(nèi)角和定理求出,根據(jù)等式的基本性質(zhì)可得,從而求出結(jié)論.【詳解】解:∵∠BAC=65°,∥AB∴由旋轉(zhuǎn)的性質(zhì)可得,∴,∴,∴故選B.【點(diǎn)睛】此題考查的是平行線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì),掌握平行線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等邊對等角是解決此題的關(guān)鍵.4、D【分析】先由勾股定理求出AB,然后由旋轉(zhuǎn)的性質(zhì),得到,,得到,即可求出.【詳解】解:在△ABC中,∠ACB=90°,AC=3,BC=1.∴,由旋轉(zhuǎn)的性質(zhì),得,,,∴,在中,由勾股定理,得;故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理解直角三角形,解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的性質(zhì)和勾股定理,正確求出邊的長度.5、D【解析】試題解析:觀察該幾何體的三視圖發(fā)現(xiàn)其為半個圓柱,半圓柱的直徑為2,表面積有四個面組成:兩個半圓,一個側(cè)面,還有一個正方形.故其表面積為:故選D.6、B【解析】由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.7、B【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】A、不是中心對稱圖形;B、是中心對稱圖形;C、不是中心對稱圖形;D、不是中心對稱圖形故選:B.【點(diǎn)睛】本題考查的是中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、D【分析】根據(jù)題意分別把m=-2代入甲、乙兩位同學(xué)設(shè)置的“數(shù)值轉(zhuǎn)換機(jī)”求值即可.【詳解】解:甲的“數(shù)值轉(zhuǎn)換機(jī)”:當(dāng)時(shí),(-2)2+52=4+25=29,乙的“數(shù)值轉(zhuǎn)換機(jī)”:當(dāng)時(shí),[(-2)+5]2=32=9,故選D.【點(diǎn)睛】本題考查了求代數(shù)式的值.解題關(guān)鍵是根據(jù)數(shù)值轉(zhuǎn)換機(jī)的圖示分清運(yùn)算順序.9、A【分析】作OE⊥AB于E,OF⊥CD于F,根據(jù)題意得到△AOB∽△COD,根據(jù)相似三角形的對應(yīng)高的比等于相似比計(jì)算即可.【詳解】作OE⊥AB于E,OF⊥CD于F,由題意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的長是物體AB長的.故答案選:A.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用.10、D【分析】可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A.一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯誤;B.由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯誤;C.由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯誤;D.由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了拋物線和直線的性質(zhì),用假設(shè)法來解答這種數(shù)形結(jié)合題是一種很好的方法.11、C【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,就可以求解.【詳解】解:根據(jù)題意得:且,解得:且.故選:C.【點(diǎn)睛】本題考查的知識點(diǎn)為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負(fù)數(shù).本題應(yīng)注意在求得取值后應(yīng)排除不在取值范圍內(nèi)的值.12、C【分析】首先將展開圖折疊,即可得出與漢字“治”相對的面上的漢字.【詳解】由題意,得與漢字“治”相對的面上的漢字是“依”,故答案為C.【點(diǎn)睛】此題主要考查對正方體展開圖的認(rèn)識,熟練掌握,即可解題.二、填空題(每題4分,共24分)13、1.【分析】由三角函數(shù)定義即可得出答案.【詳解】解:∵,,∴;故答案為:1.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用;熟練掌握三角函數(shù)定義是解題的關(guān)鍵.14、(﹣5,3)【詳解】解:關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是橫、縱坐標(biāo)都互為相反數(shù),從而點(diǎn)P(5,﹣3)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(﹣5,3).故答案為:(﹣5,3).15、3【分析】根據(jù)概率公式即可得出總數(shù),再根據(jù)總數(shù)算出白球個數(shù)即可.【詳解】∵摸到紅球的概率為,且袋中只有1個紅球,∴袋中共有4個球,∴白球個數(shù)=4-1=3.故答案為:3.【點(diǎn)睛】本題考查概率相關(guān)的計(jì)算,關(guān)鍵在于通過概率求出總數(shù)即可算出白球.16、110∏C㎡【解析】試題分析:∵圓錐的底面周長為10π,∴扇形紙片的面積=×10π×14=140πcm1.故答案為140π.考點(diǎn):圓錐的計(jì)算.17、4π.【分析】根據(jù)弧長公式求弧長即可.【詳解】此扇形的弧長==4π,故答案為:4π.【點(diǎn)睛】此題考查的是求弧長,掌握弧長公式:是解決此題的關(guān)鍵.18、1【分析】根據(jù)點(diǎn)(x,y)關(guān)于原點(diǎn)對稱的點(diǎn)是(-x,-y)列出方程,解出a,b的值代入計(jì)算即可.【詳解】解:∵,關(guān)于原點(diǎn)對稱∴,解得,∴,故答案為:1.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn),熟知點(diǎn)(x,y)關(guān)于原點(diǎn)對稱的點(diǎn)是(-x,-y)是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)四邊形BFCD的面積為1.【分析】(1)由AB=AC可得,然后根據(jù)垂徑定理的推論即可證得結(jié)論;(2)先根據(jù)ASA證得△BED≌△CEF,從而可得CF=BD,于是可推得四邊形BFCD是平行四邊形,進(jìn)一步即得四邊形BFCD是菱形;易證△AEC∽△CED,設(shè)DE=x,根據(jù)相似三角形的性質(zhì)可得關(guān)于x的方程,解方程即可求出x的值,再根據(jù)菱形面積公式計(jì)算即可.【詳解】(1)證明:∵AB=AC,∴,∵AE過圓心O,∴BE=CE;(2)解:∵AB=AC,BE=CE,∴AD⊥BC,∠BAD=∠CAD,∴∠BED=∠CEF=90°,∵CF∥BD,∴∠DBE=∠FCE,∴△BED≌△CEF(ASA),∴CF=BD,∴四邊形BFCD是平行四邊形,∵AD⊥BC,∴平行四邊形BFCD是菱形;∴BD=CD,∴,∴∠CAE=∠ECD,∵∠AEC=∠CED=90°,∴△AEC∽△CED,∴,∴CE2=DE?AE,設(shè)DE=x,∵BC=8,AD=10,∴CE=4,AE=10-x,∴42=x(10﹣x),解得:x=2或x=8(舍去),∴DF=2DE=4,∴四邊形BFCD的面積=×4×8=1.【點(diǎn)睛】本題考查了垂徑定理、圓周角定理的推論、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、菱形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及一元二次方程的解法等知識,綜合性強(qiáng),具有一定的難度,熟練掌握上述基礎(chǔ)知識是解題的關(guān)鍵.20、(1);(2)見解析;(3)交點(diǎn)為和【分析】(1)根據(jù)待定系數(shù)法即可求出直線的解析式;(2)描點(diǎn)連線即可;(3)根據(jù)圖象得出函數(shù)為二次函數(shù),頂點(diǎn)坐標(biāo)為(-2,2),用待定系數(shù)法即可求出拋物線的解析式,解方程組即可得出與交點(diǎn)坐標(biāo).【詳解】(1)設(shè)直線的解析式為y=kx+m.由圖象可知,直線過點(diǎn)(6,0),(0,-3),∴,解得:,∴;(2)圖象如圖:(3)由圖象可知:函數(shù)為拋物線,頂點(diǎn)為.設(shè)其解析式為:從表中選一點(diǎn)代入得:1=4a+2,解出:,∴,即.聯(lián)立兩個解析式:,解得:或,∴交點(diǎn)為和.【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì).根據(jù)圖象求出一次函數(shù)和二次函數(shù)的解析式是解答本題的關(guān)鍵.21、(1)證明見解析;(2)證明見解析;(3).【分析】(1)如圖1中,連接AD.設(shè)∠BEC=3α,∠ACD=α,再根據(jù)圓周角定理以及三角形內(nèi)角和與外角的性質(zhì)證明∠ACB=∠ABC即可解決問題;

(2)如圖2中,連接AD,在CD上取一點(diǎn)Z,使得CZ=BD.證明△ADB≌△AZC(SAS),推出AD=AZ即可解決問題;

(3)連接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延長線于T.假設(shè)OH=a,PC=2a,求出sin∠OHK=,從而得出∠OHK=45°,再根據(jù)角度的轉(zhuǎn)化得出∠DAG=∠ACO=∠OAK,從而有tan∠ACD=tan∠DAG=tan∠OAK=,進(jìn)而可求出DG,AG的長,再通過勾股定理以及解直角三角形函數(shù)可求出FT,PT的長即可解決問題.【詳解】(1)證明:如圖1中,連接AD.設(shè)∠BEC=3α,∠ACD=α.

∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,

∵CD是直徑,∴∠DAC=90°,

∴∠D=90°-α,∴∠B=∠D=90°-α,

∵∠ACB=180°-∠BAC-∠ABC=180°-2α-(90°-α)=90°-α.

∴∠ABC=∠ACB,

∴AB=AC.(2)證明:如圖2中,連接AD,在CD上取一點(diǎn)Z,使得CZ=BD.

∵=,∴DB=CF,

∵∠DBA=∠DCA,CZ=BD,AB=AC,

∴△ADB≌△AZC(SAS),∴AD=AZ,

∵AG⊥DZ,∴DG=GZ,

∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:連接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延長線于T.

∵CP⊥AC,∴∠ACP=90°,∴PA是直徑,

∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,

∴四邊形OKCR是矩形,∴RC=OK,

∵OH:PC=1:,∴可以假設(shè)OH=a,PC=2a,∴PR=RC=a,

∴RC=OK=a,sin∠OHK=,∴∠OHK=45°.

∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°-90°-45°=45°,

∵CD是直徑,∴∠DAC=90°,∴∠ADH=90°-45°=45°,

∴∠DHA=∠ADH,∴AD=AH,

∵∠COP=∠AOD,∴AD=PC,

∴AH=AD=PC=2a,

∴AK=AH+HK=2a+a=3a,

在Rt△AOK中,tan∠OAK=,OA=,∴sin∠OAK=,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,

∵AO=CO,∴∠OAK=∠ACO,

∴∠DAG=∠ACO=∠OAK,

∴tan∠ACD=tan∠DAG=tan∠OAK=,

∴AG=3DG,CG=3AG,

∴CG=9DG,

由(2)可知,CG=DG+CF,

∴DG+12=9DG,∴DG=,AG=3DG=3×=,

∴AD=,∴PC=AD=.∵sin∠F=sin∠OAK,∴sin∠F=,∴CT=,F(xiàn)T=,PT=,∴PF=FT-PT=.【點(diǎn)睛】本題屬于圓綜合題,考查了圓周角定理,垂徑定理,全等三角形的判定和性質(zhì),解直角三角形,矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考壓軸題.22、(1)m=-1,n=-1;(2)y=-x+【分析】(1)由直線與雙曲線相交于A(-1,a)、B兩點(diǎn)可得B點(diǎn)橫坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(1,0),再根據(jù)△AOC的面積為1可求得點(diǎn)A的坐標(biāo),從而求得結(jié)果;(2)設(shè)直線AC的解析式為y=kx+b,由圖象過點(diǎn)A(-1,1)、C(1,0)根據(jù)待定系數(shù)法即可求的結(jié)果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點(diǎn),∴B點(diǎn)橫坐標(biāo)為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設(shè)直線AC的解析式為y=kx+b∵y=kx+b經(jīng)過點(diǎn)A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)圖象的交點(diǎn)問題,此類問題是初中數(shù)學(xué)的重點(diǎn),在中考中極為常見,熟練掌握待定系數(shù)法是解題關(guān)鍵.23、(1)、800、;(2)【分析】(1)由選項(xiàng)D的人數(shù)及其所占的百分比可得調(diào)查的人數(shù),總調(diào)查人數(shù)減去A、B、D、E選項(xiàng)的人數(shù)即為C選項(xiàng)的人數(shù),求出B選項(xiàng)占總調(diào)查人數(shù)的百分比再乘以360度即為項(xiàng)對應(yīng)的扇形圓心角度數(shù);(2)用列表法列出所有可能出現(xiàn)的情況,再根據(jù)概率公式求解即可.【詳解】解:(1)本次調(diào)查的總?cè)藬?shù)為人;選項(xiàng)的人數(shù)為人;扇形統(tǒng)計(jì)圖中,項(xiàng)對應(yīng)的扇形圓心角是;(2)列表如下:由表可知共有種等可能結(jié)果,其中甲、乙兩人恰好選擇同一種交通工具上班的結(jié)果有種,所以甲、乙兩人恰好選擇同一種交通工具上班的概率為.【點(diǎn)睛】本題考查了樣本估計(jì)總體及列表法或樹狀圖法求概率,是數(shù)據(jù)與概率的綜合題,靈活的將條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖中的數(shù)據(jù)相關(guān)聯(lián)是解(1)的關(guān)鍵,熟練的用列表或樹狀圖列出所有可能情況是求概率的關(guān)鍵.24、;.【分析】原式括號中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,現(xiàn)時(shí)利用除法法則變形,約分得到最簡結(jié)果,再把x的值代入計(jì)算即可.【詳解】===;當(dāng)時(shí),原式=.【點(diǎn)睛】此題考查了分式的化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.25、(1)y=x﹣1;y=;(1)點(diǎn)P1的坐標(biāo)為(,0),點(diǎn)P1的坐標(biāo)為(﹣,0),(11,0);(3)0<x≤2【解析】(1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出直線AB的函數(shù)表達(dá)式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)C的坐標(biāo),由點(diǎn)C的坐標(biāo),利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(1)過點(diǎn)C作CD⊥x軸,垂足為D點(diǎn),利用勾股定理看求出OC的長,分OC=OP和CO=CP兩種情況考慮:①當(dāng)OP=OC時(shí),由OC的長可得出OP的長,進(jìn)而可求出點(diǎn)P的坐標(biāo);②當(dāng)CO=CP時(shí),利用等腰三角形的性質(zhì)可得出OD=PD,結(jié)合OD的長可得出OP的長,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)觀察圖形,由兩函數(shù)圖象的上下位置關(guān)系,即可求出不等式≥ax+b的解集.【詳解】解:(1)將A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直線AB的函數(shù)表達(dá)式為y=x﹣1.當(dāng)x=2時(shí),y=x﹣1=1,∴點(diǎn)C的坐標(biāo)為(2,1).將C(2,1)代入y=,得:1=,解得:k=2,∴反比例函數(shù)的表達(dá)式為y=.(1)過點(diǎn)C作CD⊥x軸,垂足為D點(diǎn),則OD=2,CD=1,∴OC=.∵OC為腰,∴分兩種情況考慮,如圖1所示:①當(dāng)OP=OC時(shí),∵OC=,∴OP=,∴點(diǎn)P1的坐標(biāo)為(,0),點(diǎn)P1的坐標(biāo)為(﹣,0);②當(dāng)CO=CP時(shí),DP=DO=2,∴OP=1OD=11,∴點(diǎn)P3的坐標(biāo)為(11,0).(3)觀察函數(shù)圖象,可知:當(dāng)0<x<2時(shí),反比例函數(shù)y=的圖象在直線y=x﹣1的上方,∴不等式≥ax+b的解集為0<x≤2.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求反比例函數(shù)解析式、等腰三角形的性質(zhì)、勾股定理以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出一次(反比例)函數(shù)的關(guān)系式;(1)分OC=OP和CO=CP兩種情況求出點(diǎn)P的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論