版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年湖南省株洲市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
3.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
4.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
5.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
6.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
7.
8.
9.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
10.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
11.
12.
13.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
14.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
15.A.0B.2C.2f(-1)D.2f(1)
16.
17.()。A.e-6
B.e-2
C.e3
D.e6
18.
19.
20.()A.A.1/2B.1C.2D.e二、填空題(20題)21.
22.
23.y"+8y=0的特征方程是________。
24.
25.微分方程y'=2的通解為__________。
26.設(shè)z=x3y2,則
27.
28.
29.
30.
31.32.33.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.34.設(shè)y=ln(x+2),貝y"=________。35.
36.
37.
38.
39.40.三、計(jì)算題(20題)41.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
44.
45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.46.47.證明:48.求微分方程的通解.49.
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則51.
52.
53.
54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.56.將f(x)=e-2X展開為x的冪級數(shù).57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).58.求曲線在點(diǎn)(1,3)處的切線方程.59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.設(shè)z=z(x,y)由x2+y3+2z=1確定,求63.
64.
65.
66.
67.68.
69.
70.
五、高等數(shù)學(xué)(0題)71.若f(x一1)=x2+3x+5,則f(x+1)=________。
六、解答題(0題)72.
參考答案
1.C解析:
2.B
3.D
4.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
5.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。可知應(yīng)選C。
6.B
7.B
8.A
9.D
10.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
11.C
12.C解析:
13.C
14.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
15.C本題考查了定積分的性質(zhì)的知識點(diǎn)。
16.C
17.A
18.D
19.D
20.C
21.
本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
22.
解析:
23.r2+8r=0本題考查的知識點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
24.
25.y=2x+C26.12dx+4dy;本題考查的知識點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
由于z=x3y2可知,均為連續(xù)函數(shù),因此
27.eyey
解析:
28.
29.22解析:
30.y=0
31.2
32.33.y=f(1).
本題考查的知識點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為
y-f(x0)=f(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為
y—f(1)=0.
本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f(x)(x-1).
本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
34.35.本題考查的知識點(diǎn)為:求解可分離變量的微分方程.
36.3x2+4y3x2+4y解析:
37.
38.[-11)39.本題考查的知識點(diǎn)為不定積分的換元積分法。40.2本題考查的知識點(diǎn)為二重積分的幾何意義.
由二重積分的幾何意義可知,所給二重積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知
41.
42.函數(shù)的定義域?yàn)?/p>
注意
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
44.
45.
46.
47.
48.
49.
則
50.由等價(jià)無窮小量的定義可知51.由一階線性微分方程通解公式有
52.
53.
54.
55.
56.
57.
列表:
說明
58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.由二重積分物理意義知
60.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
61.解
62.本題考查的知識點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).
若z=z(x,y)由方程F(x,y,z)=0確定,求z對x,y的偏導(dǎo)數(shù)通常有兩種方法:
一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三者同等對待,各看做是獨(dú)立變元.
二是將F(x,y,z)=0兩端關(guān)于x求偏導(dǎo)數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導(dǎo)數(shù),將z=z(x,y)看作中間變量,可以解出
63.
64.
65.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024醫(yī)院保潔物業(yè)服務(wù)合同模板
- 日本箏相關(guān)項(xiàng)目建議書
- 2024年工程技術(shù)咨詢協(xié)作合同模板版
- 2024年檢驗(yàn)合格生鮮豬肉購銷協(xié)議一
- 2024年鋁合金模板工程勞務(wù)分包合同一
- 2024年二手車交易協(xié)議細(xì)則版
- 2024離職證明都拿到了,還沒解除合同怎么辦
- 投標(biāo)合作協(xié)議書
- 健身操舞課程設(shè)計(jì)
- 液壓運(yùn)輸機(jī)項(xiàng)目評價(jià)分析報(bào)告
- 2024年稅務(wù)考試-稅務(wù)稽查員筆試參考題庫含答案
- DB11/1983-2022-建筑類涂料與膠粘劑揮發(fā)性有機(jī)化合物含量限值標(biāo)準(zhǔn)
- 風(fēng)電場應(yīng)急預(yù)案演練方案及流程
- 2023年注安師考試(化工安全)考前三頁紙
- 《醫(yī)療衛(wèi)生機(jī)構(gòu)安全生產(chǎn)標(biāo)準(zhǔn)化管理規(guī)范(修訂)》
- 醫(yī)院窗口服務(wù)培訓(xùn)課件
- 大學(xué)生職業(yè)規(guī)劃大賽成長賽道參賽作品
- 自來水公司招聘考試題庫
- 小學(xué)生數(shù)學(xué)草稿本使用養(yǎng)成小策略 論文
- 《4.1數(shù)列的概念》教案、導(dǎo)學(xué)案與同步練習(xí)
- 咨詢服務(wù)協(xié)議中英文模板完整版doc(二篇)
評論
0/150
提交評論