下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
7相似三角形的性質(zhì)【知識與技能】1.理解并掌握相似三角形對應(yīng)線段(高、中線、角平分線)比與相似比之間的關(guān)系.2.理解并掌握相似三角形的周長及面積與相似比的關(guān)系.【過程與方法】對性質(zhì)定理的探究:學(xué)生經(jīng)歷觀察——猜想——論證——歸納的過程,培養(yǎng)學(xué)生主動探究、合作交流的習(xí)慣和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.【情感態(tài)度】在學(xué)習(xí)和探討的過程中,體驗從特殊到一般的認(rèn)知規(guī)律.【教學(xué)重點】相似三角形性質(zhì)定理的探索及應(yīng)用.【教學(xué)難點】相似三角形的性質(zhì)與判定的綜合應(yīng)用.一、情境導(dǎo)入,初步認(rèn)識1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形嗎?全等三角形的相似比是多少?3.相似三角形還有其它的性質(zhì)嗎?本節(jié)我們就來探索相似三角形的其它性質(zhì).【教學(xué)說明】回顧前面所學(xué)的知識,為本節(jié)課的學(xué)習(xí)作鋪墊.二、思考探究,獲取新知1.如圖,△ABC和△A′B′C′是兩個相似三角形,相似比為k,其中,AD、A′D′分別為BC、B′C′邊上的高,那么,AD和A′D′之間有什么關(guān)系?證明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,AD⊥B′C′∴∠ADB=∠A′D′B′=90°∴△ABD∽△A′B′D′∴AB︰A′B′=AD︰A′D′=k.2.△ABC∽△A′B′C′,AD、A′D′分別是△ABC和△A′B′C′邊上的中線,AE、A′E′分別是△ABC和△A′B′C′的角平分線,且AB︰A′B′=k,那么AD與A′D′、AE與A′E′之間有怎樣的關(guān)系?【教學(xué)說明】學(xué)生小組內(nèi)交流討論,寫出過程,教師點評.【歸納結(jié)論】相似三角形對應(yīng)角平分線的比、對應(yīng)中線的比都等于相似比.探究這幾個問題的目的是引導(dǎo)學(xué)生運用所學(xué)知識,通過合情推理,探索出相似三角形的性質(zhì).3.如圖,△ABC∽△A′B′C′,=k,AD、A′D′為高線.(1)這兩個相似三角形周長比為多少?(2)這兩個相似三角形面積比為多少?分析:(1)由于△ABC∽△A′B′C′,所以AB︰A′B′=BC︰B′C′=AC︰A′C′=k,由合比性質(zhì)可知(AB+BC+AC)︰(A′B′+B′C′+A′C′)=k;(2)由題意可知△ABD∽△A′B′D′,所以AB︰A′B′=AD︰A′D′=k,因此可得△ABC的面積︰△A′B′C′的面積=(AD·BC)︰(A′D′·B′C′)=k2.【教學(xué)說明】通過這兩個問題,引導(dǎo)學(xué)生通過合作交流,找出解決問題的方法.【歸納總結(jié)】相似三角形的周長比等于相似比,面積比等于相似比的平方.三、運用新知,深化理解1.已知△ABC∽△A′B′C′,BD和B′D′是它們的對應(yīng)中線,且,B′D′=4,則BD的長為6.2.已知△ABC∽△A′B′C′,AD和A′D′是它們的對應(yīng)角平分線,且AD=8cm,A′D′=3cm.則△ABC與△A′B′C′對應(yīng)高的比為.3.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,則等于()A.B.C.D.解析:由題意可知△DAO∽△DEA,∴==.所以選D.4.把一個三角形改做成和它相似的三角形,如果面積縮小到原來的倍,那么邊長應(yīng)縮小到原來的_____倍.解析:根據(jù)面積比等于相似比的平方可得相似比為,所以邊長應(yīng)縮小到原來的倍.5.已知△ABC的三邊長分別為5、12、13,與其相似的△A′B′C′的最大邊長為26,求△A′B′C′的面積S.解:設(shè)△ABC的三邊依次為:BC=5,AC=12,AB=13,則∵AB2=BC2+AC2,∴∠C=90°.又∵△ABC∽△A′B′C′,∴∠C′=∠C=90°.==,∴B′C′=10,A′C′=24.∴S=A′C′×B′C′=×24×10=120.6.如圖,梯形ABCD中,AB∥CD,點F在BC上,連接DF與AB的延長線交于點G.(1)求證:△CDF∽△BGF;(2)當(dāng)點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=6cm,EF=4cm,求CD的長.(1)證明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)解:∵△CDF∽△BGF,又F是BC的中點,∴△CDF≌△BGF,∴DF=FG,CD=BG,又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2cm,∴CD=BG=2cm.【教學(xué)說明】通過例題的拓展延伸,體會類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生大膽猜想、勇于探索、勤于思考的習(xí)慣,提高分析問題和解決問題的能力.四、師生互動,課堂小結(jié)通過本節(jié)課的學(xué)習(xí),你有哪些收獲?1、布置作業(yè):教材“習(xí)題及3.12”中第1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度白酒貼牌生產(chǎn)與渠道拓展服務(wù)合同3篇
- 端口鑄件鑄造課程設(shè)計
- 2025年度創(chuàng)意辦公空間租賃及配套服務(wù)合同3篇
- 網(wǎng)站建設(shè)技術(shù)課程設(shè)計
- 職工信息系統(tǒng)課程設(shè)計
- 2025版建筑公司節(jié)能玻璃檢測與綠色建筑標(biāo)準(zhǔn)合同3篇
- 網(wǎng)絡(luò)推廣課程設(shè)計
- 2025年度快遞企業(yè)快遞駕駛員工作職責(zé)與考核合同3篇
- 北京經(jīng)貿(mào)職業(yè)學(xué)院《中國古代文學(xué)史(3)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度智能安防系統(tǒng)項目監(jiān)理合同
- 測繪地理信息與地圖編制作業(yè)指導(dǎo)書
- 實驗診斷學(xué)練習(xí)題庫(附參考答案)
- 2024版新能源汽車充電站電線電纜采購合同2篇
- 國家藥包材檢驗標(biāo)準(zhǔn)培訓(xùn)
- 腫瘤科危急重癥護理
- 2024-2030年中國加速器行業(yè)發(fā)展趨勢及運營模式分析報告版
- 護理查房深靜脈置管
- 計算與人工智能概論知到智慧樹章節(jié)測試課后答案2024年秋湖南大學(xué)
- 2024年度油漆涂料生產(chǎn)線租賃合同3篇
- 2024-2024年上海市高考英語試題及答案
- 慶祝澳門回歸25周年主題班會 課件 (共22張)
評論
0/150
提交評論