2022-2023學年廣東省廣州市越秀區(qū)廣州大附屬中學中考數(shù)學仿真試卷含解析_第1頁
2022-2023學年廣東省廣州市越秀區(qū)廣州大附屬中學中考數(shù)學仿真試卷含解析_第2頁
2022-2023學年廣東省廣州市越秀區(qū)廣州大附屬中學中考數(shù)學仿真試卷含解析_第3頁
2022-2023學年廣東省廣州市越秀區(qū)廣州大附屬中學中考數(shù)學仿真試卷含解析_第4頁
2022-2023學年廣東省廣州市越秀區(qū)廣州大附屬中學中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示是由幾個完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個幾何體的體積為()A.2 B.3 C.4 D.52.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.3.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.數(shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.數(shù)據(jù)A的波動小一些4.光年天文學中的距離單位,1光年大約是9500000000000km,用科學記數(shù)法表示為A. B. C. D.5.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)6.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)7.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°

B.75°或15°

C.105°或15°

D.75°或105°8.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<79.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°10.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=211.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.1012.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________14.地球上的海洋面積約為361000000km1,則科學記數(shù)法可表示為_______km1.15.數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等”這一推論,如圖所示,若SEBMF=1,則SFGDN=_____.16.反比例函數(shù)的圖象經(jīng)過點和,則______.17.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.18.因式分解:____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?20.(6分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?21.(6分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大小;(Ⅱ)如圖②,當DE=BE時,求∠C的大?。?2.(8分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.23.(8分)在平面直角坐標系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.24.(10分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是______;(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.25.(10分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.26.(12分)如圖所示,某校九年級(3)班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結(jié)果都不取近似值)27.(12分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個立方體,主視圖和左視圖都是上下兩行,所以這個幾何體共由上下兩層小正方體組成,俯視圖有3個小正方形,所以下面一層共有3個小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個小正方體,故這個幾何體由4個小正方體組成,其體積是4.故選C.【點睛】錯因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.2、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關(guān)鍵.3、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.4、C【解析】

科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將9500000000000km用科學記數(shù)法表示為.故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、C【解析】

根據(jù)黃金分割點的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.【點睛】本題考查了黃金分割,應該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.6、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應用,熟練掌握相關(guān)知識點是解答的關(guān)鍵.7、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運用.8、B【解析】

利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.9、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.10、A【解析】

根據(jù)二次根式的性質(zhì)對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.11、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.12、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.14、3.61×2【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將361000000用科學記數(shù)法表示為3.61×2.故答案為3.61×2.15、1【解析】

根據(jù)從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等得SEBMF=SFGDN,得SFGDN.【詳解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【點睛】本題考查面積的求解,解題的關(guān)鍵是讀懂題意.16、-1【解析】

先把點(1,6)代入反比例函數(shù)y=,求出k的值,進而可得出反比例函數(shù)的解析式,再把點(m,-3)代入即可得出m的值.【詳解】解:∵反比例函數(shù)y=的圖象經(jīng)過點(1,6),∴6=,解得k=6,∴反比例函數(shù)的解析式為y=.∵點(m,-3)在此函數(shù)圖象上上,∴-3=,解得m=-1.故答案為-1.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.17、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設(shè)AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.18、3(x-2)(x+2)【解析】

先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)80、72;(2)16人;(3)50人【解析】

(1)用步行人數(shù)除以其所占的百分比即可得到樣本總?cè)藬?shù):810%=80(人);用總?cè)藬?shù)乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計圖算出騎自行車的所占百分比,再用總?cè)藬?shù)乘以該百分比即可求出騎自行車的人數(shù),補全條形圖即可.(3)依題意設(shè)原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總?cè)藬?shù)為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數(shù)為80×20%=16人,補全圖形如下:(3)設(shè)原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【點睛】本題主要考查統(tǒng)計圖表和一元一次不等式的應用。20、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應購進A種機器人100臺【解析】

(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據(jù)題意列方程組即可得到結(jié)論;(2)設(shè)最多應購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據(jù)題意兩不等式即可得到結(jié)論.【詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設(shè)最多應購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應購進A種機器人100臺.【點睛】本題考查了二元一次方程組,一元一次不等式的應用,正確的理解題意是解題的關(guān)鍵.21、(Ⅰ)68°(Ⅱ)56°【解析】

(1)圓內(nèi)接四邊形的一個外角等于它的內(nèi)對角,利用圓內(nèi)接四邊形的性質(zhì)證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據(jù)同圓中,相等的弦所對弧相等,再根據(jù)同圓中,相等的弧所對圓周角相等,求出∠EAC,最后根據(jù)直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.【詳解】(Ⅰ)∵四邊形ABED圓內(nèi)接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【點睛】本題主要考查圓周角定理、直徑的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)等知識,解決本題的關(guān)鍵是靈活運用所學知識解決問題.22、(1);(2)P在第二象限,Q在第三象限.【解析】試題分析:(1)求出點B坐標即可解決問題;(2)結(jié)論:P在第二象限,Q在第三象限.利用反比例函數(shù)的性質(zhì)即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數(shù)的解析式為.(2)結(jié)論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數(shù)y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數(shù)法、反比例函數(shù)的性質(zhì)、坐標與圖形的變化等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.23、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解析】試題分析:(1)先假設(shè)出函數(shù)解析式,利用三點法求解函數(shù)解析式.(2)設(shè)出M點的坐標,利用S=S△AOM+S△OBM﹣S△AOB即可進行解答;(1)當OB是平行四邊形的邊時,表示出PQ的長,再根據(jù)平行四邊形的對邊相等列出方程求解即可;當OB是對角線時,由圖可知點A與P應該重合,即可得出結(jié)論.試題解析:解:(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點代入函數(shù)解析式得:解得,所以此函數(shù)解析式為:.(2)∵M點的橫坐標為m,且點M在這條拋物線上,∴M點的坐標為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當m=-時,S有最大值為:S=-.(1)設(shè)P(x,).分兩種情況討論:①當OB為邊時,根據(jù)平行四邊形的性質(zhì)知PB∥OQ,∴Q的橫坐標的絕對值等于P的橫坐標的絕對值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標為(-1,1)或或;②當BO為對角線時,如圖,知A與P應該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標為:(-1,1)或或或(1,-1).點睛:本題是對二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.24、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】

(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如圖3,,∵CK≤AC+AK,∴當C、A、K三點共線時,CK的長最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即線段CK長的最大值是.考點:四邊形綜合題.25、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論