版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.3.已知展開(kāi)式的二項(xiàng)式系數(shù)和與展開(kāi)式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.804.甲、乙、丙、丁四人通過(guò)抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說(shuō):“我沒(méi)抓到.”乙說(shuō):“丙抓到了.”丙說(shuō):“丁抓到了”丁說(shuō):“我沒(méi)抓到."已知他們四人中只有一人說(shuō)了真話,根據(jù)他們的說(shuō)法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁5.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.6.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.7.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.8.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.89.已知函數(shù)滿足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.10.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.11.函數(shù)在的圖象大致為()A. B.C. D.12.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個(gè)不等式應(yīng)該為_(kāi)_________.14.已知集合,.若,則實(shí)數(shù)a的值是______.15.在平面直角坐標(biāo)系中,點(diǎn)P在直線上,過(guò)點(diǎn)P作圓C:的一條切線,切點(diǎn)為T(mén).若,則的長(zhǎng)是______.16.若實(shí)數(shù),滿足不等式組,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點(diǎn).(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點(diǎn)的極坐標(biāo)為,,求的值.18.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.20.(12分)已知,,,,證明:(1);(2).21.(12分)已知,均為正項(xiàng)數(shù)列,其前項(xiàng)和分別為,,且,,,當(dāng),時(shí),,.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問(wèn)題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2.A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.3.D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開(kāi)式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.4.A【解析】
可采用假設(shè)法進(jìn)行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒(méi)有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜](méi)有抓到就是真的,與他們四人中只有一個(gè)人抓到是矛盾的;假設(shè)甲:我沒(méi)有抓到是假的,那么丁:我沒(méi)有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點(diǎn)睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進(jìn)行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.5.C【解析】
作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.6.A【解析】
根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.7.D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.8.A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.9.C【解析】
由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.10.B【解析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.11.C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.12.D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對(duì)于第一個(gè)不等式,,則有,對(duì)于第二個(gè)不等式,,則有,對(duì)于第三個(gè)不等式,,則有,依此類推:第個(gè)不等式為:,故答案為.【點(diǎn)睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.14.9【解析】
根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點(diǎn)睛】本題考查集合的交集,是基礎(chǔ)題.15.【解析】
作出圖像,設(shè)點(diǎn),根據(jù)已知可得,,且,可解出,計(jì)算即得.【詳解】如圖,設(shè),圓心坐標(biāo)為,可得,,,,,解得,,即的長(zhǎng)是.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點(diǎn)間的距離,運(yùn)用了數(shù)形結(jié)合的思想.16.5【解析】
根據(jù)題意,畫(huà)出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫(huà)出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問(wèn)題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡(jiǎn)、整理,得.因?yàn)橹本€與曲線交于,兩點(diǎn).所以,解得.由根與系數(shù)的關(guān)系,得,.因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上.所以,解得,此時(shí)滿足.且,故..【點(diǎn)睛】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題.18.(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見(jiàn)解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19.(1)見(jiàn)解析(2)【解析】
(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.20.(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開(kāi)即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),,,,,,,.【點(diǎn)睛】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.21.(1),(2)【解析】
(1),所,兩式相減,即可得到數(shù)列遞推關(guān)系求解通項(xiàng)公式,由,整理得,得到,即可求解通項(xiàng)公式;(2)由(1)可知,,即可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)椋?,兩式相減,整理得,當(dāng)時(shí),,解得,所以數(shù)列是首項(xiàng)和公比均為的等比數(shù)列,即,因?yàn)?,整理得,又因?yàn)?,所以,所以,即,因?yàn)椋詳?shù)列是以首項(xiàng)和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點(diǎn)睛】此題考查求數(shù)列的通項(xiàng)公式,以及數(shù)列求和,關(guān)鍵在于對(duì)題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項(xiàng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)安防電子行業(yè)市場(chǎng)供需趨勢(shì)發(fā)展戰(zhàn)略分析報(bào)告
- 2024年塔吊司機(jī)承包項(xiàng)目勞務(wù)合同3篇
- 2024-2030年中國(guó)太陽(yáng)能發(fā)電系統(tǒng)設(shè)備商業(yè)計(jì)劃書(shū)
- 2024-2030年中國(guó)地面通信導(dǎo)航定向設(shè)備行業(yè)當(dāng)前經(jīng)濟(jì)形勢(shì)及投資建議研究報(bào)告
- 茅臺(tái)學(xué)院《圖形圖像信息處理進(jìn)階》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年權(quán)益保障:合同與財(cái)務(wù)制度
- 茅臺(tái)學(xué)院《電子測(cè)量原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 馬鞍山師范高等??茖W(xué)校《中外基礎(chǔ)教育比較》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年在線教育平臺(tái)軟件定制委托開(kāi)發(fā)合同2篇
- 2024三輪汽車駕駛培訓(xùn)學(xué)校合作經(jīng)營(yíng)協(xié)議3篇
- 2024年低壓電工復(fù)審取證考試題庫(kù)附答案(通用版)
- 新管徑流速流量對(duì)照表
- 咯血病人做介入手術(shù)后的護(hù)理
- 境外投資環(huán)境分析報(bào)告
- 《壓力平衡式旋塞閥》課件
- 物聯(lián)網(wǎng)與人工智能技術(shù)融合發(fā)展年度報(bào)告
- 婦產(chǎn)科醫(yī)生醫(yī)患溝通技巧
- 內(nèi)科學(xué)糖尿病教案
- 《高尿酸血癥》課件
- 微量泵的操作及報(bào)警處置課件查房
- 人教版小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)5 1《平行與垂直》練習(xí)
評(píng)論
0/150
提交評(píng)論