肝硬化數(shù)據(jù)挖掘_第1頁
肝硬化數(shù)據(jù)挖掘_第2頁
肝硬化數(shù)據(jù)挖掘_第3頁
肝硬化數(shù)據(jù)挖掘_第4頁
肝硬化數(shù)據(jù)挖掘_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ComparisonofAITechniquesforPredictionofLiverFibrosis

inHepatitisPatientsJournalofMedicalSystemJiajunShiSomeexplanationsFibrosis-纖維化Hepatitis-肝炎HepatitisB/C–乙肝/丙肝Cirrhosis–肝硬化Liverbiopsies-活組織檢查Non-invasivetechniques–無創(chuàng)技術(shù)Serummarkers–血清標(biāo)記

OutlineIntroductionBackground:AIandCDSSNa?veBayesClassifier(NBC)&LogisticsRegressionHepatitisandFibrosisStageAIAssistedWeb-basedClinicalDecisionSupportSystemFourMethodsResultsandDiagnosticAccuracyConclusionIntroductionOneintwelvepeoplehavetheHepatitisBorHepatitisCvirusDiagnosisandtreatmentofthisdiseaseisguidedbyliverbiopsieswhereasmallamountoftissueisremovedbyasurgeonandexaminedbyapathologistDeterminethefibrosisstagefromF0(nodamage)toF4(cirrhosis)RiskandcostlyNon-invasivetechniques,withserummarkers,imagingtest,andgeneticstudiesAccuracynotachievedsufficientacceptanceIntroductionNon-invasivetechniques,withserummarkers,imagingtest,andgeneticstudiesAI

&CDSSKnowledgeofthelevelofliverdamageinapatientwith

liverdisease(particularlyHepatitisBandHepatitisC)isa

criticalfactorindeterminingtheoptimalcourseoftreatment

andtomeasuretheeffectivenessofalternativetreatmentsin

patients.NotaccurateBackgroundofAIandCDSSArtificialIntelligenceandDataMiningtechniquesIncludeNeuralNetworks,FuzzyLogic,DecisionTrees,BayesianClassifiers,SupportVectorMachines,GeneticAlgorithmsandHybridSystemClinicalandMedicalDecisionSupportSystemsSupporttheprocessofdiscoveringusefulinformationinlargeclinicalrepositoriesTheyhaddonethesystemdesignedwithneuralnetworksanddecisiontreemethodsbecauseoftheirsuccessfulapplicationinsimilarproblemdomainsHepatitisandFibrosisStageOneintwelvepeoplehavetheHepatitisBorHepatitisCvirusFibrosisStage

Description0Nofibrosis-Normalconnectivetissue

1Portalfibrosis-Fibrousportalexpansion

2Periportalfibrosis-Periportalorrareportal-portalsepta

3Septalfibrosis-Fibrousseptawitharchitecturaldistortion;no

obviouscirrhosis

4Cirrhosis

AIAssistedWeb-basedClinicalDecisionSupportSystemAIAssistedCDSSAItechniquesResultingknowledgebaseAIAssistedWeb-basedClinicalDecisionSupportSystemExplanations血清細胞堿性磷酸酶血清膽堿酯酶膽紅素谷氨酸轉(zhuǎn)肽酶丙種球蛋白類測試時年齡乙肝or丙肝Variables:SerumMarkersPatientsInfoAIAssistedweb-basedClinicalDecisionSupportSystemSysteminputs&Outputs:FourMethodsPaper‘AdvancedDecisionSupportforComplexClinicalDecisions’NeuralNetworks,DecisionTreesThispaperNaiveBayesandLogRegressionMethodinputs:FourMethods–Na?vebayesclassifierThevariationinmeanvaluesfortwoparameters(ABLandG-GL)areshownbyfibrosisstageintheFigure.Withthismodel,wecancalculatethecombinedprobabilityofeachfibrosisstagethenselectthehighestprobableasourpredictedresult.FourMethods-LogisticsregressionCrossValidationandDiagnosticAccuracyCrossValidationandDiagnosticAccuracyAccuracyofFibrosisStagePredictions(424patients)

PredictiveSensitivityandSpecificityConclusionThefourartificialintelligencemethodspresentedinthisstudyshowedsomesignificantvariabilityinaccuracy,sensitivity,andspecificityinpredictingfibrosisstageindataon424hepatitispatients.Althoughneuralnetworkmethodsshowedthehighestsensitivityandspecificity,theirroleispredictingtheexactfibrosisstagewasrelativelypoor.Logisticregressionandna?vebayesmethodswereth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論