2023學(xué)年江西省萍鄉(xiāng)市蓮花中考數(shù)學(xué)全真模擬試題含解析及點睛_第1頁
2023學(xué)年江西省萍鄉(xiāng)市蓮花中考數(shù)學(xué)全真模擬試題含解析及點睛_第2頁
2023學(xué)年江西省萍鄉(xiāng)市蓮花中考數(shù)學(xué)全真模擬試題含解析及點睛_第3頁
2023學(xué)年江西省萍鄉(xiāng)市蓮花中考數(shù)學(xué)全真模擬試題含解析及點睛_第4頁
2023學(xué)年江西省萍鄉(xiāng)市蓮花中考數(shù)學(xué)全真模擬試題含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運(yùn)算正確的是()A. B. C. D.2.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點O旋轉(zhuǎn)180°得到△CDA,點A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)3.已知關(guān)于的方程,下列說法正確的是A.當(dāng)時,方程無解B.當(dāng)時,方程有一個實數(shù)解C.當(dāng)時,方程有兩個相等的實數(shù)解D.當(dāng)時,方程總有兩個不相等的實數(shù)解4.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.5.已知反比例函數(shù)下列結(jié)論正確的是()A.圖像經(jīng)過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當(dāng)x>1時,y<16.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點O旋轉(zhuǎn)某一角度時與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°7.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy8.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠29.在同一直角坐標(biāo)系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.10.現(xiàn)有三張背面完全相同的卡片,正面分別標(biāo)有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機(jī)抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形中,對角線與相交于點,為上一點,,為的中點.若的周長為18,則的長為________.12.已知是整數(shù),則正整數(shù)n的最小值為___13.如圖,在△ABC中,BD和CE是△ABC的兩條角平分線.若∠A=52°,則∠1+∠2的度數(shù)為_______.14.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.15.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是.16.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內(nèi)角的度數(shù)是______.17.如圖,反比例函數(shù)y=(x>0)的圖象與矩形AOBC的兩邊AC,BC邊相交于E,F(xiàn),已知OA=3,OB=4,△ECF的面積為,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.19.(5分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程兩個根均為正整數(shù),求負(fù)整數(shù)m的值.20.(8分)在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達(dá)式及點B的坐標(biāo);(2)當(dāng)﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內(nèi)有兩個公共點,結(jié)合圖象求b的取值范圍.21.(10分).在一個不透明的布袋中裝有三個小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機(jī)地從布袋中摸出一個小球,則摸出的球為標(biāo)有數(shù)字2的小球的概率為;小麗先從布袋中隨機(jī)摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機(jī)摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的縱坐標(biāo),請用樹狀圖或表格列出點M所有可能的坐標(biāo),并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.22.(10分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當(dāng)?shù)陌霃綖?時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標(biāo)的取值范圍.23.(12分)計算:2﹣1+|﹣|++2cos30°24.(14分)如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知:,,矩形自右向左在直線上平移,當(dāng)點到達(dá)點時,矩形停止運(yùn)動.在平移過程中,設(shè)矩形對角線與半圓的交點為(點為半圓上遠(yuǎn)離點的交點).如圖2,若與半圓相切,求的值;如圖3,當(dāng)與半圓有兩個交點時,求線段的取值范圍;若線段的長為20,直接寫出此時的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運(yùn)算,底數(shù)不變,指數(shù)相乘.,故D正確;【點睛】本題考查冪的乘方和合并同類項,熟練掌握運(yùn)算法則是解題的關(guān)鍵.2、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標(biāo).3、C【解析】當(dāng)時,方程為一元一次方程有唯一解.當(dāng)時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當(dāng)時,方程有兩個相等的實數(shù)解,當(dāng)且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.4、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應(yīng)用.5、B【解析】分析:直接利用反比例函數(shù)的性質(zhì)進(jìn)而分析得出答案.詳解:A.反比例函數(shù)y=,圖象經(jīng)過點(﹣1,﹣1),故此選項錯誤;B.反比例函數(shù)y=,圖象在第一、三象限,故此選項正確;C.反比例函數(shù)y=,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D.反比例函數(shù)y=,當(dāng)x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.6、C【解析】

先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,同旁內(nèi)角互補(bǔ).7、D【解析】

A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.

(?2a2)3=?8a6,故本項錯誤;C.

(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關(guān)鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.8、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D9、D【解析】

根據(jù)k值的正負(fù)性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當(dāng)k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當(dāng)k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關(guān)鍵.10、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

先根據(jù)直角三角形的性質(zhì)求出DE的長,再由勾股定理得出CD的長,進(jìn)而可得出BE的長,由三角形中位線定理即可得出結(jié)論.【詳解】解:∵四邊形是正方形,∴,,.在中,為的中點,∴.∵的周長為18,,∴,∴.在中,根據(jù)勾股定理,得,∴,∴.在中,∵,為的中點,又∵為的中位線,∴.故答案為:.【點睛】本題考查的是正方形的性質(zhì),涉及到直角三角形的性質(zhì)、三角形中位線定理等知識,難度適中.12、1【解析】

因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),

∴是整數(shù),即1n是完全平方數(shù);

∴n的最小正整數(shù)值為1.

故答案為:1.【點睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負(fù)數(shù)進(jìn)行解答.13、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的兩條角平分線,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案為64°.點睛:本題考查的是三角形內(nèi)角和定理、角平分線的定義,掌握三角形內(nèi)角和等于180°是解題的關(guān)鍵.14、.【解析】

解:根據(jù)從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質(zhì)及判定方法和概率的計算公式是本題的解題關(guān)鍵.15、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

,

∴BF=EF=

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

,

又∵PB=

∴BE=

,

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識.16、144°【解析】

根據(jù)多邊形內(nèi)角和公式計算即可.【詳解】解:由題知,這是一個10邊形,根據(jù)多邊形內(nèi)角和公式:每個內(nèi)角等于.故答案為:144°.【點睛】此題重點考察學(xué)生對多邊形內(nèi)角和公式的應(yīng)用,掌握計算公式是解題的關(guān)鍵.17、1【解析】

設(shè)E(,3),F(xiàn)(1,),由題意(1-)(3-)=,求出k即可;【詳解】∵四邊形OACB是矩形,

∴OA=BC=3,AC=OB=1,

設(shè)E(,3),F(xiàn)(1,),

由題意(1-)(3-)=,

整理得:k2-21k+80=0,

解得k=1或20,

k=20時,F(xiàn)點坐標(biāo)(1,5),不符合題意,

∴k=1

故答案為1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是會利用參數(shù)構(gòu)建方程解決問題.三、解答題(共7小題,滿分69分)18、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質(zhì)得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應(yīng)用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關(guān)鍵.19、(1)見解析;(2)m=-1.【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結(jié)論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數(shù),且m為負(fù)整數(shù)∴m=-1.【點睛】本題考查了一元二次方程與根的判別式,解題的關(guān)鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.20、(1)拋物線的表達(dá)式為y=x2﹣2x﹣2,B點的坐標(biāo)(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解析】

(1)、將點A坐標(biāo)代入求出m的值,然后根據(jù)二次函數(shù)的性質(zhì)求出點B的坐標(biāo);(2)、將二次函數(shù)配成頂點式,然后根據(jù)二次函數(shù)的增減性得出y的取值范圍;(2)、根據(jù)函數(shù)經(jīng)過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數(shù)的解析式,從而得出b的取值范圍.【詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達(dá)式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(biāo)(-1,0).(2)y=-2x-2=-3.∵當(dāng)-2<x<1時,y隨x增大而減小,當(dāng)1≤x<2時,y隨x增大而增大,∴當(dāng)x=1,y最小=-3.又∵當(dāng)x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當(dāng)直線y=kx+b經(jīng)過B(-1,0)和點(3,2)時,解析式為y=x+.當(dāng)直線y=kx+b經(jīng)過(0,-2)和點(3,2)時,解析式為y=x-2.由函數(shù)圖象可知;b的取值范圍是:-2<b<.【點睛】本題主要考查的就是二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)以及函數(shù)的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據(jù)函數(shù)圖形進(jìn)行求解;對于第三問我們必須能夠根據(jù)題意畫出函數(shù)圖象,然后根據(jù)函數(shù)圖象求出取值范圍.在解決二次函數(shù)的題目時,畫圖是非常關(guān)鍵的基本功.21、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標(biāo)有數(shù)字2的小球有1種可能,因此摸出的球為標(biāo)有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.試題解析:(1)P(摸出的球為標(biāo)有數(shù)字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結(jié)果數(shù),其中點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,∴P(點M落在如圖所示的正方形網(wǎng)格內(nèi))==.考點:1列表或樹狀圖求概率;2平面直角坐標(biāo)系.22、(1)①、;②(2)或,.【解析】

據(jù)若,則點P為的“特征點”,可得答案;根據(jù)若,則點P為的“特征點”,可得,根據(jù)等腰直角三角形的性質(zhì),可得答案;根據(jù)垂線段最短,可得P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論