上海市閔行區(qū)24校2023年中考聯(lián)考數(shù)學試題含解析及點睛_第1頁
上海市閔行區(qū)24校2023年中考聯(lián)考數(shù)學試題含解析及點睛_第2頁
上海市閔行區(qū)24校2023年中考聯(lián)考數(shù)學試題含解析及點睛_第3頁
上海市閔行區(qū)24校2023年中考聯(lián)考數(shù)學試題含解析及點睛_第4頁
上海市閔行區(qū)24校2023年中考聯(lián)考數(shù)學試題含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.2.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(nèi)(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘3.點A(a,3)與點B(4,b)關于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.720174.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.35.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.6.的相反數(shù)是()A. B.2 C. D.7.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°8.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.39.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.10.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現(xiàn)需降價處理,為占有市場份額,且經(jīng)市場調(diào)查:每降價元,每星期可多賣出件.現(xiàn)在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.511.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°12.如圖所示,點E是正方形ABCD內(nèi)一點,把△BEC繞點C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.△ABC的頂點都在方格紙的格點上,則sinA=_▲.14.如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點,則∠EDF等于__________°.15.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.16.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.17.太陽半徑約為696000千米,數(shù)字696000用科學記數(shù)法表示為千米.18.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2018次翻轉(zhuǎn)之后,點B的坐標是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,D是AB邊上任意一點,E是BC邊中點,過點C作AB的平行線,交DE的延長線于點F,連接BF,CD.(1)求證:四邊形CDBF是平行四邊形;(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的長.20.(6分)解不等式組:,并把解集在數(shù)軸上表示出來。21.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.22.(8分)解方程組:.23.(8分)進入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關系式,并直接寫出售價x的范圍;當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?24.(10分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數(shù)量關系,并說明理由.25.(10分)如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.26.(12分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達式;(2)請你幫助小麗一家選擇合算的租車方案.27.(12分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據(jù)______.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.2、D【解析】

設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點睛】本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關鍵.3、B【解析】

根據(jù)關于y軸對稱的點的縱坐標相等,橫坐標互為相反數(shù),可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點睛】本題考查了關于y軸對稱的點的坐標,利用關于y軸對稱的點的縱坐標相等,橫坐標互為相反數(shù)得出a,b是解題關鍵.4、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.5、C【解析】

如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考常考題型.6、D【解析】

因為-+=0,所以-的相反數(shù)是.故選D.7、A【解析】

利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形對應角相等是本題的解題關鍵.8、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設a=x,則c=3x,b==2x.即tanA==.故選B.【點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關鍵.9、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.10、A【解析】

設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現(xiàn)在可以賣出[300+20(60-x)]件,然后根據(jù)盈利為6120元即可列出方程解決問題.【詳解】解:設售價為x元時,每星期盈利為6120元,

由題意得(x-40)[300+20(60-x)]=6120,

解得:x1=57,x2=1,

由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.

∴每件商品應降價60-57=3元.

故選:A.【點睛】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.11、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.12、C【解析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應點到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應邊相等,故為等腰直角三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.14、【解析】E、F分別是BC、AC的中點.,∠CAB=26°又∠CAD=26°!15、1°【解析】

根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【點睛】本題考查的是全等三角形的性質(zhì)和三角形內(nèi)角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.16、22°【解析】

由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關知識是解決問題的關鍵.17、.【解析】試題分析:696000=6.96×1,故答案為6.96×1.考點:科學記數(shù)法—表示較大的數(shù).18、(4033,)【解析】

根據(jù)正六邊形的特點,每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定出點B的位置,經(jīng)過第2017次翻轉(zhuǎn)之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經(jīng)過2017次翻轉(zhuǎn)之后,點B的坐標是(4032,0),經(jīng)過2018次翻轉(zhuǎn)之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經(jīng)過2018次翻轉(zhuǎn)之后點B的坐標.然后求出翻轉(zhuǎn)前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉(zhuǎn)之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組,∵2018÷6=336余2,∴經(jīng)過2016次翻轉(zhuǎn)為第336個循環(huán),點B在初始狀態(tài)時的位置,而第2017次翻轉(zhuǎn)之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經(jīng)過2017次翻轉(zhuǎn)之后,點B的坐標是(4032,0),經(jīng)過2018次翻轉(zhuǎn)之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經(jīng)過2018次翻轉(zhuǎn)之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉(zhuǎn),正六邊形的性質(zhì),確定出最后點B所在的位置是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解析】

(1)先證明出△CEF≌△BED,得出CF=BD即可證明四邊形CDBF是平行四邊形;(2)作EM⊥DB于點M,根據(jù)平行四邊形的性質(zhì)求出BE,DF的值,再根據(jù)三角函數(shù)值求出EM的值,∠EDM=30°,由此可得出結論.【詳解】解:(1)證明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中點,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四邊形CDBF是平行四邊形.(2)解:如圖,作EM⊥DB于點M,∵四邊形CDBF是平行四邊形,BC=,∴,DF=2DE.在Rt△EMB中,EM=BE?sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【點睛】本題考查了平行四邊形的判定與全等三角形的判定與性質(zhì),解題的關鍵是熟練的掌握平行四邊形的判定與全等三角形的判定與性質(zhì).20、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:21、(1)證明見解析;(2)2.【解析】

(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.22、【解析】

方程組整理后,利用加減消元法求出解即可.【詳解】解:方程組整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:則原方程組的解為【點睛】本題主要考查二元一次方程組的解法,二元一次方程組的解法有兩種:代入消元法和加減消元法,根據(jù)題目選擇合適的方法.23、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價x(元/包)之間的函數(shù)關系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項系數(shù)﹣5<0,∴x=45時,w取得最大值,最大值為1.答:當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點睛:本題考查了二次函數(shù)的應用,解題的關鍵是明確題意,可以寫出相應的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.24、(1);(2)∠CDE=2∠A.【解析】

(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質(zhì);探究型;和差倍分.25、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論