2022-2023學年青海省西寧市海湖中學中考數(shù)學考試模擬沖刺卷含解析_第1頁
2022-2023學年青海省西寧市海湖中學中考數(shù)學考試模擬沖刺卷含解析_第2頁
2022-2023學年青海省西寧市海湖中學中考數(shù)學考試模擬沖刺卷含解析_第3頁
2022-2023學年青海省西寧市海湖中學中考數(shù)學考試模擬沖刺卷含解析_第4頁
2022-2023學年青海省西寧市海湖中學中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.52.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.3.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°4.某種品牌手機經過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%5.-2的倒數(shù)是()A.-2 B. C. D.26.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣27.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x28.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤19.一個幾何體的三視圖如圖所示,那么這個幾何體是()A. B. C. D.10.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對11.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位12.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉時,點F的運動軌跡是_________圖形14.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.15.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.16.因式分解:3x3﹣12x=_____.17.如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD為米,點A、D、B在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)18.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形中,對角線、交于點,以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積20.(6分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(6分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉,得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.22.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?23.(8分)有一個n位自然數(shù)能被x0整除,依次輪換個位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個n位數(shù)是x0的一個“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個“輪換數(shù)”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個一個“輪換數(shù)”.(1)若一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,求證這個兩位自然數(shù)一定是“輪換數(shù)”.(2)若三位自然數(shù)是3的一個“輪換數(shù)”,其中a=2,求這個三位自然數(shù).24.(10分)如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.25.(10分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:m=;請補全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為;已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.26.(12分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?27.(12分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經過某一個定點,如果是,請證明你的結論;如果不是,請說明理由

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.2、B【解析】

根據幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側一列有2層,右側一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.3、D【解析】

根據兩直線平行,內錯角相等可得∠3=∠1,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質并準確識圖是解題的關鍵.4、C【解析】

設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據第三個月售價為1,列出方程求解即可.【詳解】解:設二,三月份平均每月降價的百分率為.根據題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點睛】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).5、B【解析】

根據倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握6、D【解析】

根據一元二次方程根與系數(shù)的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),

∴x1+x1,=-(k1-4)=0,解得k=±1,

當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;

當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;

∴k=-1.

故選D.【點睛】本題考查的是根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.7、B【解析】

根據平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.8、B【解析】

將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據根的判別式以及根與系數(shù)的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關鍵是利用兩個函數(shù)的解析式構成方程,再利用一元二次方程的根與系數(shù)的關系求解.9、C【解析】由主視圖和左視圖可得此幾何體為柱體,根據俯視圖為三角形可得此幾何體為三棱柱.故選C.10、B【解析】

由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.【點睛】本題考查了圓周角定理及正比例函數(shù)圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.11、C【解析】

根據“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關鍵.12、C【解析】【分析】根據各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、圓【解析】

根據題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關鍵是根據題意作出相應的圖形,方可判斷.14、1.【解析】分析:根據同一時刻物高與影長成比例,列出比例式再代入數(shù)據計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立數(shù)學模型來解決問題.15、1【解析】

兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數(shù)是相同的.16、3x(x+2)(x﹣2)【解析】

先提公因式3x,然后利用平方差公式進行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.17、100(1+)【解析】分析:如圖,利用平行線的性質得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質得BD=CD=100,然后計算AD+BD即可.詳解:如圖,∵無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點間的距離為100(1+)米.故答案為100(1+).點睛:本題考查了解直角三角形的應用﹣仰角俯角問題:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.18、5或1.【解析】

先依據勾股定理求得AB的長,然后由翻折的性質可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)S四邊形ADOE=.【解析】

(1)根據矩形的性質有OA=OB=OC=OD,根據四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據菱形的性質有∠EAB=∠BAO.根據矩形的性質有AB∥CD,根據平行線的性質有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.【點睛】考查平行四邊形的判定與性質,矩形的性質,菱形的判定與性質,解直角三角形,綜合性比較強.20、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、證明見解析【解析】【分析】(1)根據菱形的性質可得BC=DC,,再根據,從而可得,繼而得=,由旋轉的性質可得=,證明≌,即可證得=;(2)根據菱形的對角線的性質可得,,從而得,由,可得,由(1)可知,可推得,即可得,問題得證.【詳解】(1)∵四邊形ABCD是菱形,∴,,∵,∴,∴,∵線段由線段繞點順時針旋轉得到,∴,在和中,,∴≌,∴;(2)∵四邊形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【點睛】本題考查了旋轉的性質、菱形的性質、全等三角形的判定與性質等,熟練掌握和應用相關的性質與定理是解題的關鍵.22、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應用,體現(xiàn)了數(shù)學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質確定方案.23、(1)見解析;(2)201,207,1【解析】試題分析:(1)先設出兩位自然數(shù)的十位數(shù)字,表示出這個兩位自然數(shù),和輪換兩位自然數(shù)即可;

(2)先表示出三位自然數(shù)和輪換三位自然數(shù),再根據能被5整除,得出b的可能值,進而用4整除,得出c的可能值,最后用能被3整除即可.試題解析:(1)設兩位自然數(shù)的十位數(shù)字為x,則個位數(shù)字為2x,∴這個兩位自然數(shù)是10x+2x=12x,∴這個兩位自然數(shù)是12x能被6整除,∵依次輪換個位數(shù)字得到的兩位自然數(shù)為10×2x+x=21x∴輪換個位數(shù)字得到的兩位自然數(shù)為21x能被7整除,∴一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,這個兩位自然數(shù)一定是“輪換數(shù)”.(2)∵三位自然數(shù)是3的一個“輪換數(shù)”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次輪換得到的三位自然數(shù)是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次輪換得到的三位自然數(shù)是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的個位數(shù)字不是0,便是5,∴b=0或b=5,當b=0時,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴這個三位自然數(shù)可能是為201,203,205,207,209,而203,205,209不能被3整除,∴這個三位自然數(shù)為201,207,當b=5時,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴這個三位自然數(shù)可能是為251,1,257,259,而251,257,259不能被3整除,∴這個三位自然數(shù)為1,即這個三位自然數(shù)為201,207,1.【點睛】此題是數(shù)的整除性,主要考查了3的倍數(shù),4的倍數(shù),5的倍數(shù)的特點,解本題的關鍵是用5的倍數(shù)求出b的值.24、(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.【解析】

(1)根據題意得出,即可得出結論;(2)先證明四邊形是平行四邊形,再由菱形的性質得出,證明四邊形是矩形,得出對角線相等,即可得出結論.【詳解】(1)解:四邊形ACBD是菱形;理由如下:根據題意得:AC=BC=BD=AD,∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);(2)證明:∵DE∥AB,BE∥CD,∴四邊形BEDM是平行四邊形,∵四邊形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四邊形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【點睛】本題考查了菱形的判定、矩形的判定與性質、平行四邊形的判定,熟練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論