四川省宜賓2023學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析及點(diǎn)睛_第1頁
四川省宜賓2023學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析及點(diǎn)睛_第2頁
四川省宜賓2023學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析及點(diǎn)睛_第3頁
四川省宜賓2023學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析及點(diǎn)睛_第4頁
四川省宜賓2023學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是幾何體的俯視圖,所表示數(shù)字為該位置小正方體的個數(shù),則該幾何體的正視圖是()A. B. C. D.2.下列等式正確的是()A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1C.a(chǎn)3+a3=a6 D.(ab)2=a3.已知二次函數(shù)y=a(x﹣2)2+c,當(dāng)x=x1時,函數(shù)值為y1;當(dāng)x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達(dá)式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(chǎn)(y1﹣y2)>0 D.a(chǎn)(y1+y2)>04.在如圖所示的計算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象應(yīng)為()A. B. C. D.5.的絕對值是()A.﹣4 B. C.4 D.0.46.如圖,小明為了測量河寬AB,先在BA延長線上取一點(diǎn)D,再在同岸取一點(diǎn)C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m7.拋物線y=mx2﹣8x﹣8和x軸有交點(diǎn),則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠08.某運(yùn)動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.9.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.1410.如圖,將△OAB繞O點(diǎn)逆時針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到ΔA′B′C′,且點(diǎn)A在A′B′上,則旋轉(zhuǎn)角為________________°.12.如圖,數(shù)軸上點(diǎn)A所表示的實數(shù)是________________.13.如圖(1),在矩形ABCD中,將矩形折疊,使點(diǎn)B落在邊AD上,這時折痕與邊AD和BC分別交于點(diǎn)E、點(diǎn)F.然后再展開鋪平,以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點(diǎn)E的坐標(biāo)為_________________________.14.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點(diǎn)C的對應(yīng)點(diǎn)為,再將所折得的圖形沿EF折疊,使得點(diǎn)D和點(diǎn)A重合若,,則折痕EF的長為______.15.計算(+)(-)的結(jié)果等于________.16.不等式組的解集是_____________.三、解答題(共8題,共72分)17.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.18.(8分)化簡,再求值:19.(8分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設(shè)計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.20.(8分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒?,她將盒子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?21.(8分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)22.(10分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D且BD=2AD,過點(diǎn)D作DE⊥AC交BA延長線于點(diǎn)E,垂足為點(diǎn)F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.23.(12分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點(diǎn)A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.24.如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面看得到的圖形即可.【詳解】解:主視圖,如圖所示:.故選B.【點(diǎn)睛】本題考查由三視圖判斷幾何體;簡單組合體的三視圖.用到的知識點(diǎn)為:主視圖是從物體的正面看得到的圖形;看到的正方體的個數(shù)為該方向最多的正方體的個數(shù).2、B【解析】

(1)根據(jù)完全平方公式進(jìn)行解答;(2)根據(jù)合并同類項進(jìn)行解答;(3)根據(jù)合并同類項進(jìn)行解答;(4)根據(jù)冪的乘方進(jìn)行解答.【詳解】解:A、(a+b)2=a2+2ab+b2,故此選項錯誤;B、3n+3n+3n=3n+1,正確;C、a3+a3=2a3,故此選項錯誤;D、(ab)2=a2b,故此選項錯誤;故選B.【點(diǎn)睛】本題考查整數(shù)指數(shù)冪和整式的運(yùn)算,解題關(guān)鍵是掌握各自性質(zhì).3、C【解析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對稱性確定出y1與y2的大小關(guān)系,然后對各選項分析判斷即可得解.【詳解】解:①a>1時,二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,②a<1時,二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,綜上所述,表達(dá)式正確的是a(y1﹣y2)>1.故選:C.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),利用了二次函數(shù)的對稱性,關(guān)鍵要掌握根據(jù)二次項系數(shù)a的正負(fù)分情況討論.4、D【解析】

先求出一次函數(shù)的關(guān)系式,再根據(jù)函數(shù)圖象與坐標(biāo)軸的交點(diǎn)及函數(shù)圖象的性質(zhì)解答即可.【詳解】由題意知,函數(shù)關(guān)系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當(dāng)x=0時,y=4,當(dāng)y=0時,x=1.故選D.【點(diǎn)睛】本題考查學(xué)生對計算程序及函數(shù)性質(zhì)的理解.根據(jù)計算程序可知此計算程序所反映的函數(shù)關(guān)系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質(zhì)求解.5、B【解析】分析:根據(jù)絕對值的性質(zhì),一個負(fù)數(shù)的絕對值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因為-的相反數(shù)為所以-的絕對值為.故選:B點(diǎn)睛:此題主要考查了求一個數(shù)的絕對值,關(guān)鍵是明確絕對值的性質(zhì),一個正數(shù)的絕對值等于本身,0的絕對值是0,一個負(fù)數(shù)的絕對值為其相反數(shù).6、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點(diǎn)睛】本題考查的知識點(diǎn)是解直角三角形的應(yīng)用,關(guān)鍵是構(gòu)建直角三角形,解直角三角形求出答案.7、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點(diǎn),即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點(diǎn),,解得:且.故選.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)的定義以及解一元一次不等式組,牢記“當(dāng)時,拋物線與x軸有交點(diǎn)是解題的關(guān)鍵.8、C【解析】

從正面看到的圖形如圖所示:,故選C.9、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點(diǎn)睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運(yùn)用切線長定理,本題屬于中等題型.10、D【解析】

由△OAB繞O點(diǎn)逆時針旋轉(zhuǎn)60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點(diǎn)逆時針旋轉(zhuǎn)60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等及等邊三角形的判定和性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、50度【解析】

由將△ACB繞點(diǎn)C順時針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點(diǎn)C順時針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點(diǎn)睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.12、【解析】

A點(diǎn)到-1的距離等于直角三角形斜邊的長度,應(yīng)用勾股定理求解出直角三角形斜邊長度即可.【詳解】解:直角三角形斜邊長度為,則A點(diǎn)到-1的距離等于,則A點(diǎn)所表示的數(shù)為:﹣1+【點(diǎn)睛】本題考查了利用勾股定理求解數(shù)軸上點(diǎn)所表示的數(shù).13、(,2).【解析】

解:如圖,當(dāng)點(diǎn)B與點(diǎn)D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點(diǎn)E坐標(biāo)(,2).故答案為:(,2).【點(diǎn)睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.14、【解析】

首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點(diǎn)睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強(qiáng),有一定的難度,解題時要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.15、2【解析】

利用平方差公式進(jìn)行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算,掌握平方差公式結(jié)構(gòu)特征是解本題的關(guān)鍵.16、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.三、解答題(共8題,共72分)17、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.18、【解析】試題分析:把分式化簡,然后把x的值代入化簡后的式子求值就可以了.試題解析:原式==當(dāng)時,原式=.考點(diǎn):1.二次根式的化簡求值;2.分式的化簡求值.19、(1)8m;(2)答案不唯一【解析】

(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點(diǎn)D作DCAB于點(diǎn)C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點(diǎn)睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.20、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】試題分析:通過題意和表格,可知摸到白球的概率都接近與0.6,因此摸到白球的概率估計值為0.6.21、(1)5.6(2)貨物MNQP應(yīng)挪走,理由見解析.【解析】

(1)如圖,作AD⊥BC于點(diǎn)DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結(jié)論:貨物MNQP應(yīng)挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應(yīng)挪走.22、(1);(2)見解析;(3)【解析】

(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)連接OD,∵OD=OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論