2023屆貴州省遵義市綏陽(yáng)中學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁(yè)
2023屆貴州省遵義市綏陽(yáng)中學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁(yè)
2023屆貴州省遵義市綏陽(yáng)中學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁(yè)
2023屆貴州省遵義市綏陽(yáng)中學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁(yè)
2023屆貴州省遵義市綏陽(yáng)中學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.1 B.2 C.3 D.42.已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,183.復(fù)數(shù)滿足,則()A. B. C. D.4.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓6.總體由編號(hào)為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為()A.23 B.21 C.35 D.327.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.8.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無(wú)數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行9.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無(wú)最小值 B.有最大值,有最小值C.無(wú)最大值,有最小值 D.無(wú)最大值,無(wú)最小值10.如圖,拋物線:的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長(zhǎng)為半徑的圓交于,兩點(diǎn),則關(guān)于值的說(shuō)法正確的是()A.等于4 B.大于4 C.小于4 D.不確定11.()A. B. C. D.12.下列結(jié)論中正確的個(gè)數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項(xiàng)公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?小球在下落的過(guò)程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.14.若,則=______,=______.15.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.16.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過(guò)濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過(guò)濾器采用并聯(lián)安裝,再與一級(jí)過(guò)濾器串聯(lián)安裝.其中每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn)在使用過(guò)程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過(guò)程中單獨(dú)購(gòu)買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)一級(jí)過(guò)濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)二級(jí)過(guò)濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.19.(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn).(1)若的最小值為,求實(shí)數(shù)的值;(2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積.20.(12分)數(shù)列滿足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對(duì)任意的正整數(shù)m、k,均有.21.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.22.(10分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.3、C【解析】

利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過(guò),,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問(wèn)題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.5、B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時(shí)有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B【點(diǎn)睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類討論思想.6、B【解析】

根據(jù)隨機(jī)數(shù)表法的抽樣方法,確定選出來(lái)的第5個(gè)個(gè)體的編號(hào).【詳解】隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個(gè)數(shù)字開始,由左向右依次選取兩個(gè)數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號(hào)01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個(gè)編號(hào)為21.故選:B【點(diǎn)睛】本小題主要考查隨機(jī)數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.7、D【解析】

由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.8、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無(wú)數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.9、B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問(wèn)題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.10、A【解析】

利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線與拋物線的相交問(wèn)題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題11、D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.12、B【解析】

根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項(xiàng)公式為,可得為一次項(xiàng)系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則與可以相交或平行,故②錯(cuò)誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯(cuò)誤;④若,則,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故④正確;綜上可得正確的有①④共2個(gè);故選:B【點(diǎn)睛】本題考查命題的真假判斷,主要是正弦定理的運(yùn)用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運(yùn)算能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時(shí)一直向左或者一直向右下落,小球?qū)⒙淙氪?,所以有,則.故本題應(yīng)填.14、10【解析】

①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.15、【解析】

模擬程序的運(yùn)行過(guò)程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過(guò)程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語(yǔ)句中的循環(huán)語(yǔ)句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16、【解析】

先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來(lái),利用函數(shù)思想來(lái)判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有,即,再求得在點(diǎn)處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點(diǎn),則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點(diǎn),且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點(diǎn),注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時(shí),為單調(diào)遞增函數(shù),且,從而在上無(wú)零點(diǎn);當(dāng)時(shí),要使得在上存在零點(diǎn),則只需,,因?yàn)闉閱握{(diào)遞增函數(shù),,所以;因?yàn)闉閱握{(diào)遞增函數(shù),且,因此;因?yàn)闉檎麛?shù),且,所以.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買的各級(jí)濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.19、(1)的值為或.(2)【解析】

(1)分類討論,當(dāng)時(shí),線段與拋物線沒(méi)有公共點(diǎn),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,當(dāng)三點(diǎn)共線時(shí),能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時(shí),線段與拋物線有公共點(diǎn),利用兩點(diǎn)間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒(méi)有公共點(diǎn),即時(shí),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)共線時(shí),的最小值為,此時(shí)若線段與拋物線有公共點(diǎn),即時(shí),則三點(diǎn)共線時(shí),的最小值為:,此時(shí)綜上,實(shí)數(shù)的值為或.因?yàn)?,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點(diǎn)睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問(wèn)題,屬于中檔題.20、(1),;(2),證明見解析【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論