2022-2023學(xué)年四川成都市溫江區(qū)達標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第1頁
2022-2023學(xué)年四川成都市溫江區(qū)達標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第2頁
2022-2023學(xué)年四川成都市溫江區(qū)達標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第3頁
2022-2023學(xué)年四川成都市溫江區(qū)達標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第4頁
2022-2023學(xué)年四川成都市溫江區(qū)達標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,空心圓柱體的左視圖是()A. B. C. D.2.如圖,菱形OABC的頂點C的坐標(biāo)為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點B,則k的值為A.12 B.20 C.24 D.323.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:14.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.5.在實數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.46.實數(shù)a,b在數(shù)軸上對應(yīng)的點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.7.計算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a48.當(dāng)函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)9.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.2510.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空題(共7小題,每小題3分,滿分21分)11.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.12.若關(guān)于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.13.化簡:=_____.14.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側(cè),連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.15.閱讀理解:引入新數(shù)i,新數(shù)i滿足分配律、結(jié)合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.16.如圖所示,點C在反比例函數(shù)的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.17.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在等腰△ABC中,AB=AC,點D,E分別為BC,AB的中點,連接AD.在線段AD上任取一點P,連接PB,PE.若BC=4,AD=6,設(shè)PD=x(當(dāng)點P與點D重合時,x的值為0),PB+PE=y.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、計算,得到了x與y的幾組值,如下表:x0123456y5.24.24.65.97.69.5說明:補全表格時,相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)(2)建立平面直角坐標(biāo)系(圖2),描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;(3)求函數(shù)y的最小值(保留一位小數(shù)),此時點P在圖1中的什么位置.19.(5分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉(zhuǎn)交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.20.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標(biāo),并求出點E縱坐標(biāo)的范圍;(3)求△BCE的面積最大值.21.(10分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程兩個根均為正整數(shù),求負整數(shù)m的值.22.(10分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標(biāo)為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標(biāo);若不能,請說明理由.23.(12分)某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.24.(14分)為了加強學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽,從中抽取了部分的學(xué)生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學(xué)生,估計成績優(yōu)秀的學(xué)生有多少名?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.2、D【解析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標(biāo)為(3,4),∴OD=3,CD=4.∴根據(jù)勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標(biāo)為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.3、C【解析】

求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.【點睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.4、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).5、C【解析】在實數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.6、D【解析】

根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運算是解題關(guān)鍵.7、D【解析】

直接利用同底數(shù)冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關(guān)鍵.8、B【解析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當(dāng)x<1時,函數(shù)值y隨著x的增大而減??;故選B.點睛:本題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).9、C【解析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.10、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、10%【解析】

設(shè)平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【詳解】設(shè)平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.12、﹣1【解析】

根據(jù)一元二次方程的解的定義把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=?1,然后利用整體代入的方法進行計算.【詳解】∵1(n≠0)是關(guān)于x的一元二次方程x1+mx+1n=0的一個根,∴4+1m+1n=0,∴n+m=?1,故答案為?1.【點睛】本題考查了一元二次方程的解(根):能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.13、【解析】

先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點睛】此題考查分式的混合運算,掌握運算法則是解題關(guān)鍵14、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點睛】本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.15、2【解析】

根據(jù)平方根的定義進行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數(shù)的運算,解題關(guān)鍵掌握平方根的定義.16、1【解析】

根據(jù)題意可以設(shè)出點A的坐標(biāo),從而以得到點C和點B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點A的坐標(biāo)為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標(biāo)為,,解得,,故答案為:1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)圖象上點的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、22.5【解析】

連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點C為的中點,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.三、解答題(共7小題,滿分69分)18、(1)4.5(2)根據(jù)數(shù)據(jù)畫圖見解析;(3)函數(shù)y的最小值為4.2,線段AD上靠近D點三等分點處.【解析】

(1)取點后測量即可解答;(2)建立坐標(biāo)系后,描點、連線畫出圖形即可;(3)根據(jù)所畫的圖象可知函數(shù)y的最小值為4.2,此時點P在圖1中的位置為.線段AD上靠近D點三等分點處.【詳解】(1)根據(jù)題意,作圖得,y=4.5故答案為:4.5(2)根據(jù)數(shù)據(jù)畫圖得(3)根據(jù)圖象,函數(shù)y的最小值為4.2,此時點P在圖1中的位置為.線段AD上靠近D點三等分點處.【點睛】本題為動點問題的函數(shù)圖象問題,正確作出圖象,利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.19、(1);(2)①2,②【解析】分析:(1)重合部分是等邊三角形,計算出邊長即可.①證明:在圖3中,取AB中點E,證明≌,即可得到,②由①知,在旋轉(zhuǎn)過程60°中始終有≌四邊形的面積等于=.詳解:(1)∵四邊形為菱形,∴∴為等邊三角形∴∵AD//∴∴為等邊三角形,邊長∴重合部分的面積:①證明:在圖3中,取AB中點E,由上題知,∴又∵∴≌,∴∴,②由①知,在旋轉(zhuǎn)過程60°中始終有≌∴四邊形的面積等于=.點睛:屬于四邊形的綜合題,考查了菱形的性質(zhì),全等三角形的判定與性質(zhì)等,熟練掌握每個知識點是解題的關(guān)鍵.20、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當(dāng)m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設(shè),利用求線段中點的公式列出關(guān)于m的方程組,再利用0<m<1即可求解;(1)連結(jié)BD,過點D作x軸的垂線交BC于點H,由,設(shè)出點D的坐標(biāo),進而求出點H的坐標(biāo),利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設(shè)點E(a,b)∵0<m<1,∴當(dāng)m=1時,縱坐標(biāo)最小值為2當(dāng)m=1時,最大值為2∴點E縱坐標(biāo)的范圍為(1)連結(jié)BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當(dāng)m=1.5時,.點睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,會用方程的思想解決問題.21、(1)見解析;(2)m=-1.【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結(jié)論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數(shù),且m為負整數(shù)∴m=-1.【點睛】本題考查了一元二次方程與根的判別式,解題的關(guān)鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.22、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標(biāo)代入一次函數(shù)上可得出點B的坐標(biāo),由點B的坐標(biāo),利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標(biāo)為,可以判斷出,再由點P的橫坐標(biāo)可得出點P的坐標(biāo)是,結(jié)合PD∥x軸可得出點D的坐標(biāo),再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當(dāng)P為BM的中點時,利用中點坐標(biāo)公式可得出點P的坐標(biāo),結(jié)合PD∥x軸可得出點D的坐標(biāo),由折疊的性質(zhì)可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標(biāo)特征可得出點C的坐標(biāo),由點P,C,D的坐標(biāo)可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設(shè),則.∵∴.記的面積為,∴.(2)當(dāng)點為中點時,其坐標(biāo)為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標(biāo)特

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論