版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°2.如圖,函數(shù)y1=x3與y2=在同一坐標系中的圖象如圖所示,則當y1<y2時()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>13.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.34.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%5.某數(shù)學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]6.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.7.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣8.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.9.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個10.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發(fā)布會上,王登峰司長總結前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數(shù)法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-4二、填空題(共7小題,每小題3分,滿分21分)11.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形12.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數(shù)及相應的計算結果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113513.菱形ABCD中,∠A=60°,AB=9,點P是菱形ABCD內(nèi)一點,PB=PD=3,則AP的長為_____.14.在平面直角坐標系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.15.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.16.分解因式:=_______.17.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y=的圖象上,則k的值為________.三、解答題(共7小題,滿分69分)18.(10分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.19.(5分)先化簡,再求值:,且x為滿足﹣3<x<2的整數(shù).20.(8分)如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?21.(10分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.22.(10分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.23.(12分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.24.(14分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.2、B【解析】
根據(jù)圖象知,兩個函數(shù)的圖象的交點是(1,1),(-1,-1).由圖象可以直接寫出當y1<y2時所對應的x的取值范圍.【詳解】根據(jù)圖象知,一次函數(shù)y1=x3與反比例函數(shù)y2=的交點是(1,1),(-1,?1),∴當y1<y2時,,0<x<1或x<-1;故答案選:B.【點睛】本題考查了反比例函數(shù)與冪函數(shù),解題的關鍵是熟練的掌握反比例函數(shù)與冪函數(shù)的圖象根據(jù)圖象找出答案.3、C【解析】
根據(jù)積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【點睛】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.4、D【解析】設第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了故選D.5、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象6、B【解析】
根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據(jù)勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關鍵.7、B【解析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關鍵.8、C【解析】
結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.9、C【解析】
由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.10、B【解析】
根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數(shù)的整數(shù)位數(shù)減1.【詳解】解:85000用科學記數(shù)法可表示為8.5×104,
故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、B【解析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.12、+,1【解析】
根據(jù)表格中數(shù)據(jù)求出x、y之間的關系,即可得出答案.【詳解】解:根據(jù)表格中數(shù)據(jù)分析可得:x、y之間的關系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數(shù)的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.13、3或6【解析】
分成P在OA上和P在OC上兩種情況進行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【詳解】設AC和BE相交于點O.當P在OA上時,∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當P在OC上時,AP=OA+OP=.故答案是:3或6.【點睛】本題考查了菱形的性質(zhì),注意到P在AC上,應分兩種情況進行討論是解題的關鍵.14、-1≤a≤【解析】
根據(jù)題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數(shù)經(jīng)過點A和點C.當反比例函數(shù)經(jīng)過點A時,即=3,解得:a=±(負根舍去);當反比例函數(shù)經(jīng)過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,關鍵是掌握反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.15、1【解析】分析:首先根據(jù)正比例函數(shù)得出a的值,然后將交點坐標代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎題型.根據(jù)正比例函數(shù)得出交點坐標是解題的關鍵.16、.【解析】
將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.17、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數(shù)上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對角線乘積的一半得:,解得三、解答題(共7小題,滿分69分)18、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】
(1)根據(jù)材料1,可以對c2-6c+8分解因式;(2)①根據(jù)材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據(jù)材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據(jù)材料中的例子對所求的式子進行因式分解.19、-5【解析】
根據(jù)分式的運算法則即可求出答案.【詳解】原式=[+]÷=(+)?x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【點睛】本題考查分式的運算法則,解題的關鍵是熟練運用分式的運算法則,本題屬于基礎題型.20、(1)小強的頭部點E與地面DK的距離約為144.5cm.(2)他應向前9.5cm.【解析】試題分析:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.求出MF、FN的值即可解決問題;(2)求出OH、PH的值即可判斷;試題解析:解:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166,F(xiàn)G=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此時小強頭部E點與地面DK相距約為144.5cm.(2)過點E作EP⊥AB于點P,延長OB交MN于H.∵AB=48,O為AB中點,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他應向前9.5cm.21、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標與圖形性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行合規(guī)管理制度實施成效
- 高速公路安全行車管理制度
- 新學期美術教學工作計劃(23篇)
- 挑戰(zhàn)2024演講稿(31篇)
- 六年級下冊各具特色的民居課件
- 福建省泉州市惠安縣2023-2024學年七年級上學期期末考試數(shù)學試卷(含解析)
- 顧客服務政策的設計
- 7.2《歸園田居(其一)》課件 2024-2025學年統(tǒng)編版高中語文必修上冊
- 福州七中2025屆高考英語一模試卷含解析
- 公司金融課件版
- 室間隔缺損完整版本
- 半導體行業(yè)的投資機會與風險分析
- 高中英語U4-The-Words-That-Changed-A-Nation教學課件
- 大學生創(chuàng)業(yè)法律服務智慧樹知到期末考試答案2024年
- 中職學考《哲學與人生》考試復習題庫(含答案)
- 貨運駕駛員崗前培訓
- 滅火器維修與保養(yǎng)手冊
- 電梯日管控、周排查、月調(diào)度內(nèi)容表格
- 降低檢查報告錯誤率品管圈護理課件
- 預防未成年人犯罪法主題班會
- 2024-2024年江蘇省普通高中學業(yè)水平測試物理試卷(含答案)
評論
0/150
提交評論