




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
植被覆蓋度的提取方法研究學(xué)院:城環(huán)學(xué)院
專(zhuān)業(yè):自然地理學(xué)
姓名:王文靜
學(xué)號(hào):201320746
目錄1引言
植被是生態(tài)系統(tǒng)存在的基礎(chǔ),不論在生物化學(xué)循環(huán)還是在水循中,都扮演著重要的角色。植被依據(jù)生態(tài)系統(tǒng)中水、熱、氣等狀況,調(diào)控其內(nèi)部與外部的物質(zhì)、能量交換,植被覆蓋度的變化是地球內(nèi)部作用(土壤母質(zhì)、土壤類(lèi)型等)與外部作用(氣溫、降水等)的綜合結(jié)果,是區(qū)域生態(tài)系統(tǒng)環(huán)境變化的重要指示。全球變化與陸地生態(tài)系統(tǒng)響應(yīng)(GCTE)是當(dāng)前全球變化研究的重要內(nèi)容,而有關(guān)地表植被覆蓋與環(huán)境演變關(guān)系的研究是其中最復(fù)雜和最具活力的研究?jī)?nèi)容。2植被覆蓋度的定義與研究意義
植被覆蓋度(VFC,FractionalVegetationCover)指包括喬、灌、草和農(nóng)作物在內(nèi)所有植被的冠層、枝葉在生長(zhǎng)區(qū)域地面的垂直投影面積占研究統(tǒng)計(jì)區(qū)域面積的百分比,是衡量地表植被狀況的一個(gè)最重要的指標(biāo),其動(dòng)態(tài)是全球及區(qū)域生態(tài)變化的熱點(diǎn)研究領(lǐng)域,因此建立快速、準(zhǔn)確的VFC估算方法成為當(dāng)前建立全球及區(qū)域氣候生態(tài)模型的基礎(chǔ)工作之一。植被覆蓋度具有以下兩個(gè)特點(diǎn):
(1)測(cè)算植被覆蓋度必須將植被地上部分對(duì)植被生長(zhǎng)區(qū)域的地面進(jìn)行垂直投影。如在山坡上測(cè)算植被覆蓋度時(shí),要求將植被對(duì)坡面垂直投影,而不是鉛垂投影;(2)同樣面積的植被,對(duì)不同的研究范圍而言,會(huì)有不同的覆蓋度。如一個(gè)流域內(nèi)一定面積的森林,研究區(qū)為整個(gè)流域計(jì)算的植被覆蓋度通常小于研究區(qū)為整個(gè)林區(qū)計(jì)算的植被覆蓋度。研究意義
植被覆蓋度是反映植被基本情況的客觀指標(biāo),在許多研究中常將其作為基本的參數(shù)或因子。植被覆蓋度及其精準(zhǔn)測(cè)算研究主要具有以下重要意義:(1)作為科學(xué)研究必要的基礎(chǔ)數(shù)據(jù),為生態(tài)、水保、土壤、水利、植物等領(lǐng)域的定量研究提供基礎(chǔ)數(shù)據(jù),確保相關(guān)研究結(jié)果、模型理論更加科學(xué)可信;(2)作為生態(tài)系統(tǒng)變化的重要標(biāo)志,為區(qū)域或全球性地表覆蓋變化、景觀分異等前沿問(wèn)題的研究提供指示作用,促進(jìn)自然環(huán)境研究不斷深入發(fā)展。3國(guó)內(nèi)外研究進(jìn)展
植被覆蓋度是描述生態(tài)系統(tǒng)的重要參數(shù)之一。完全依靠實(shí)測(cè)地面樣方來(lái)估算植被覆蓋度的方法,不但花費(fèi)大量人力、物力,精度也不高;利用遙感數(shù)據(jù)通過(guò)回歸獲取研究區(qū)植被覆蓋度,是當(dāng)前區(qū)域生態(tài)建設(shè)、監(jiān)測(cè)等的重要手段。通過(guò)遙感影像的不同波段構(gòu)造的各種植被指數(shù)來(lái)反演植被覆蓋度是最主要的手段,其中歸一化植被指數(shù)(NDVI)應(yīng)用最為廣泛。目前,地面監(jiān)測(cè)中己廣泛的運(yùn)用NDVI,Timothy等用NDVI對(duì)美國(guó)新墨西哥州的草場(chǎng)產(chǎn)量進(jìn)行了定量評(píng)價(jià),Isaev等運(yùn)用火災(zāi)前后NDVI的變化評(píng)估森林火災(zāi)造成的損失,Wang等運(yùn)用洪水前后的NDVI變化,研究了中國(guó)1998年長(zhǎng)江流域的洪澇災(zāi)害。Tucker等利用NOAA-AVHRR數(shù)據(jù)對(duì)非洲大陸的干旱與沙漠化等植被覆蓋變化進(jìn)行了監(jiān)測(cè)分析。3.1國(guó)外研究進(jìn)展3.2國(guó)內(nèi)研究現(xiàn)狀崔天翔等(2013年)以華北內(nèi)陸典型的淡水濕地——北京市野鴨湖濕地自然保護(hù)區(qū)為研究對(duì)象,以中等分辨率的LandsatTM影像為數(shù)據(jù)源,基于線性光譜混合模型(LSMM)對(duì)研究區(qū)的植被覆蓋度進(jìn)行了估算。
于秀娟等(2013年)在三江源區(qū)植被覆蓋度的定量估算與動(dòng)態(tài)變化研究中為了有效提取和定量評(píng)價(jià)VFC及其變化信息,在像元分解模型的基礎(chǔ)上,采用Gutman等提出的混合像元二分模型和改進(jìn)的NDVI參數(shù)確定方法定量估算了三江源區(qū)2000~2009年的VFC,計(jì)算精度表明該方法適應(yīng)于區(qū)域植被覆蓋信息的提取。
李向婷等(2013年)為探尋一種滿(mǎn)足大尺度荒漠地區(qū)的植被覆蓋度信息的提取方法,以新疆荒漠區(qū)為例,對(duì)比和分析現(xiàn)有的遙感方法在干旱荒漠區(qū)的應(yīng)用效果,利用MODIS遙感影像和野外植被覆蓋度實(shí)測(cè)數(shù)據(jù),對(duì)常用的6種遙感植被覆蓋度提取方法(改進(jìn)的三波段梯度差法、像元二分法、線型混合像元分解法、歸一化植被指數(shù)法、增強(qiáng)型植被指數(shù)法和修正型土壤調(diào)整植被指數(shù)法)的結(jié)果進(jìn)行精度驗(yàn)證和對(duì)比分析。賈坤等(2013年)在植被覆蓋度遙感估算研究進(jìn)展中綜合分析了用于植被覆蓋度估算的遙感數(shù)據(jù)源,包括高光譜數(shù)據(jù)、多光譜數(shù)據(jù)、微波數(shù)據(jù)和激光雷達(dá)數(shù)據(jù)。而且分析了各種常用的植被覆蓋度遙感估算方法及其優(yōu)缺點(diǎn)。程紅芳等(2008年)在植被覆蓋度遙感估算方法研究進(jìn)展中綜合分析討論了目前常用的關(guān)于遙感影像的植被覆蓋度常用估算方法,對(duì)比分析了它們的優(yōu)缺點(diǎn)。
4植被覆蓋度的提取方法
VFC的估算方法主要分為地面測(cè)量和遙感監(jiān)測(cè)。地面測(cè)量主要包括目估法、采樣法、儀器法和模型法等。這種方法主要受野外作業(yè),受時(shí)間、區(qū)域等的限制,精度不高且需要花費(fèi)巨大人力、財(cái)力,一般情況下特定的模型只適用于特定的區(qū)域或特定的植被類(lèi)型,不易推廣。遙感監(jiān)測(cè)是利用遙感技術(shù)獲取研究區(qū)的植被光譜信息,然后建立其與VFC的關(guān)系,進(jìn)而獲得VFC,主要有統(tǒng)計(jì)模型法(分為回歸模型法和植被指數(shù)法)、物理模型法、像元分解模型法、FCD(ForestCa-nopyDensityMapping)模型法和基于數(shù)據(jù)挖掘技術(shù)的方法等。統(tǒng)計(jì)模型法應(yīng)用簡(jiǎn)單,易于計(jì)算,在小范圍內(nèi)具有較高的精度,但需要大量的實(shí)測(cè)數(shù)據(jù),而且易受觀測(cè)時(shí)大氣狀況、土壤狀況等的影響,不易推廣;物理模型估算的VFC雖與野外實(shí)測(cè)結(jié)果較為一致,但物理模型涉及的物理幾何參數(shù)較多,而且計(jì)算復(fù)雜,現(xiàn)實(shí)中很少用到;FCD、基于數(shù)據(jù)挖掘技術(shù)的方法也存在類(lèi)似的問(wèn)題。像元分解模型是最常用的估算模型,Gutman等在像元分解模型的基礎(chǔ)上提出的均一亞像元模型和混合亞像元(等密度、非密度和混合密度)模型,已成為相關(guān)研究領(lǐng)域的趨勢(shì)。植被指數(shù)是單位像元內(nèi)的植被類(lèi)型、覆蓋形態(tài)、生長(zhǎng)狀況等的綜合反映,其大小取決于VFC等要素,從而可以利用植被指數(shù)估算VFC。到目前為止,已經(jīng)發(fā)展了多種植被指數(shù),如歸一化植被指數(shù)NDVI、土壤調(diào)整植被指數(shù)SAVI、大氣阻抗植被指數(shù)ARVI等。歸一化植被指數(shù)NDVI是目前應(yīng)用最廣泛的植被指數(shù),與植被的分布呈線性相關(guān),是植被生長(zhǎng)狀態(tài)和空間分布的最佳指示因子,也是遙感估算VFC最常用的植被指數(shù)。以下將試對(duì)植被覆蓋度的提取方法進(jìn)行評(píng)述。
4.1地表實(shí)測(cè)方法
地表實(shí)測(cè)方法主要用于較小范圍內(nèi)的植被覆蓋度監(jiān)測(cè),對(duì)于較大范圍內(nèi)的植被覆蓋度監(jiān)測(cè),它常作為遙感監(jiān)測(cè)的輔助手段,為遙感監(jiān)測(cè)提供基礎(chǔ)數(shù)據(jù),對(duì)建立植被覆蓋度經(jīng)驗(yàn)?zāi)P图斑b感覆蓋度監(jiān)測(cè)的精度評(píng)價(jià)和驗(yàn)證,有著很重要的意義。目前,較為熟知的地表實(shí)測(cè)方法有目估法、采樣法、儀器法、模型法。
4.1.1目估法
目估法是根據(jù)經(jīng)驗(yàn)?zāi)抗琅袆e植被覆蓋度的方法,具體分為傳統(tǒng)目估法、相片目估法、橢圓目估法和網(wǎng)格目估法。傳統(tǒng)目估法是在野外劃定一定區(qū)域,由經(jīng)驗(yàn)判斷植被覆蓋度;相片目估法是多人根據(jù)同一野外相片估算植被覆蓋度,然后計(jì)算其平均值;橢圓目估
法是在植被稀疏的情況下,把地表植物近似看成橢圓形,估算樣地植被蓋度;網(wǎng)格目估法是將樣地劃分為若干網(wǎng)格,估算各網(wǎng)格樣地的植被蓋度均值??偟膩?lái)說(shuō),目估法簡(jiǎn)單易行,但估算精度受人為的影響比較大。4.1.2采樣法
采樣法是根據(jù)地面的實(shí)際測(cè)量計(jì)算植被覆蓋度的方法。常見(jiàn)的采樣法有樣點(diǎn)法和陰影法。樣點(diǎn)法是將一根根樣針在植被中垂直放下,接觸到植物枝葉的樣針數(shù)占總樣針數(shù)的百分?jǐn)?shù)即為植被覆蓋度;陰影法是正午時(shí)將一根刻度尺放于地表,在平行于行播作物行距方向,以一定距離向前移動(dòng),并讀取尺子上陰影長(zhǎng)度,總陰影長(zhǎng)度占尺子總長(zhǎng)度的百分?jǐn)?shù)即為植被覆蓋度。由此可見(jiàn),采樣法的測(cè)量程序復(fù)雜、費(fèi)時(shí)費(fèi)力,受到的條件制約多、效率不高,但是精度相對(duì)高。4.1.3儀器法
儀器法是利用感光傳感器捕捉光通過(guò)植被冠層的情況,據(jù)此計(jì)算植被的覆蓋度。該方法通常采用數(shù)碼相機(jī)作為傳感器,利用計(jì)算機(jī)的圖像處理軟件進(jìn)行處理,因此較為經(jīng)濟(jì),測(cè)量效率也高,而且測(cè)量結(jié)果有較高精度。這使該方法成為目前地表實(shí)測(cè)方法的主要方法。White等在對(duì)多種地表實(shí)測(cè)方法比較之后,認(rèn)為儀器法是較容易掌握,而且可以作為驗(yàn)證遙感信息的可靠方法。4.1.4模型法
模型法是對(duì)地面的實(shí)際測(cè)量數(shù)據(jù)進(jìn)行分析,利用數(shù)理統(tǒng)計(jì)的方法得到植被覆蓋度的時(shí)空分布規(guī)律,并對(duì)其進(jìn)行分析,得到相關(guān)經(jīng)驗(yàn)?zāi)P偷臏y(cè)量方法,該方法只適用于某一特定的區(qū)域與植被類(lèi)型,不易推廣。4.2遙感監(jiān)測(cè)方法
傳統(tǒng)植被覆蓋度的地面測(cè)量主要采用采樣法、儀器法和目視估測(cè)法,由于這些方法易受時(shí)間、天氣及區(qū)域條件的影響,耗費(fèi)時(shí)間、成本較大,且只能在較小的尺度范圍內(nèi)提供植被覆蓋信息,因此應(yīng)用受到一定的限制。遙感技術(shù)的發(fā)展為植被覆蓋度大面積、準(zhǔn)確、及時(shí)的獲取提供了可能。利用遙感技術(shù)估算植被覆蓋度,常用的監(jiān)測(cè)方法有統(tǒng)計(jì)模型法(分為回歸模型法和植被指數(shù)法)、物理模型法、像元分解模型法、FCD(ForestCanopyDensityMapping)模型法和基于數(shù)據(jù)挖掘技術(shù)的方法等。
4.2.1回歸模型法
回歸模型法又稱(chēng)為統(tǒng)計(jì)經(jīng)驗(yàn)?zāi)P头?。它利用單一波段或幾個(gè)波段的遙感監(jiān)測(cè)數(shù)據(jù),計(jì)算出植被指數(shù)(NDVI)和植被覆蓋度,并通過(guò)回歸分析得到相應(yīng)的統(tǒng)計(jì)模型,然后利用空間的外延模型,推求更大區(qū)域的植被覆蓋度。依據(jù)回歸所利用的方法,回歸模型法分為線性與非線性?xún)煞N。目前,線性回歸模型的應(yīng)用比較廣泛。
如Graetz與Pech把植被覆蓋度的實(shí)測(cè)數(shù)據(jù)與LandsatMSS的第5波段遙感監(jiān)測(cè)數(shù)據(jù)進(jìn)行線性回歸,并通過(guò)對(duì)草地生長(zhǎng)稀疏地區(qū)覆蓋度的計(jì)算,對(duì)該模型進(jìn)行了驗(yàn)證。Peter分別使用ATSR-2
沿軌掃描輻射計(jì)(AlongTrackScanningRadiometer)圖像中的多個(gè)波段與植被葉面積指數(shù)、覆蓋度等進(jìn)行了線性回歸分析,研究表明,估算的植被覆蓋度多波段線性混合模型明顯高于單一波段的線性回歸模型。H.Larsson分別由TM遙感監(jiān)測(cè)圖像、多光譜監(jiān)測(cè)圖像和SPOT5遙感監(jiān)測(cè)圖像估算了阿拉伯地區(qū)森林的NDVI值,并得到了精度較高的統(tǒng)計(jì)模型。新西蘭學(xué)者Dymond利用TM圖像,計(jì)算出NDVI植被指數(shù),并將該指數(shù)與新西蘭草地退化地區(qū)植被覆蓋度進(jìn)行了非線性回歸,估算了當(dāng)?shù)赝嘶莸氐闹脖桓采w度。也有相當(dāng)一部分研究是將線性與非線性回歸混合應(yīng)用,如Anatoly分別利用NDVI、GreenNDVI、VARI3種植被指數(shù)同小麥的植被覆蓋度建立回歸模型,NDVI、GreenNDVI采用的是線性回歸的方法、VARI采用的是非線性回歸的方法。
研究結(jié)果表明,VARI對(duì)于完全無(wú)植被覆蓋和植被完全覆蓋的情況十分敏感,并且也可以極大的降低大氣影響的敏感度。因此,建議采用VARI線性回歸模型進(jìn)行植被覆蓋度估算。回歸模型對(duì)所需遙感圖像的空間分辨率的要求比較高,且所建立的模型有很大的局限性,即只適用特定的地區(qū)和植被,不宜推廣。但該模型對(duì)于局部區(qū)域的植被覆蓋度估算具有相當(dāng)高的精度。如Graetz與Pech根據(jù)植被覆蓋度的實(shí)際測(cè)量數(shù)據(jù)與LandsatMSS的第5波段遙感監(jiān)測(cè)數(shù)據(jù)進(jìn)行線性回歸得到的模型,只適用于稀疏草地;Dymond利用TM遙感圖像,計(jì)算出NDVI植被指數(shù),并與新西蘭草地退化地區(qū)植被覆蓋度進(jìn)行了非線性回歸,也僅適用于草地退化地區(qū);Anatoly建立的回歸模型也僅適用于小麥覆蓋的情況下。與此同時(shí),Graetz、DymondAnatoly所用的遙感圖像分別是landsatMSSATSR-2和SPOT。由此可見(jiàn),回歸模型的建立也需要較高分辨率的遙感圖像。
4.2.2植被指數(shù)法
植被指數(shù)法是根據(jù)植物的光譜特征,直接選取與植被覆蓋度有良好相關(guān)性的植被指數(shù),并通過(guò)植被指數(shù)與植被覆蓋度的關(guān)系,估算植被覆蓋度?;貧w模型法中已經(jīng)說(shuō)明植被指數(shù)與植被覆蓋之間存在一定的相關(guān)性,但是與關(guān)系模型相比,植被指數(shù)法不需要建立相應(yīng)回歸模型,且不受區(qū)域、時(shí)間和植被類(lèi)型的限制,更易于使用。
張仁華提出了植被覆蓋度和植被指數(shù)的關(guān)系,
即
Fcover=(NDVI-NDVIs)/(NDVIv-NDVIs)。其中,NDVIs為純土壤像元的
NDVI值;NDVIv為純植被像元的
NDVI值;NDVI為所求地塊的植被指數(shù)。該值的類(lèi)型并不唯一,也可以用其他的植被指數(shù)替換。該模型最重要的環(huán)節(jié)就是如何確定純植被和純土壤的NDVI,它們直接影響著模型的精度。近年來(lái),有些學(xué)者根據(jù)植被垂向分層密度,建立了區(qū)域范圍內(nèi)亞像元的植被分解模型。當(dāng)區(qū)域內(nèi)葉面積指數(shù)趨近于無(wú)窮大時(shí),說(shuō)明植被類(lèi)型較為單一,且垂向的冠層密度較大,那么相應(yīng)的純植被指數(shù)就趨近于無(wú)窮大,現(xiàn)狀的植被指數(shù)值就是非植被覆蓋區(qū)域的植被指數(shù)值。
楊勝天等依據(jù)不同的NDVI值,把植被覆蓋度分為高、中高、中、低覆蓋類(lèi)型。當(dāng)植被覆蓋度大于75%時(shí),為高類(lèi);當(dāng)植被覆蓋度在60%~75%之間時(shí),為中高類(lèi);當(dāng)植被覆蓋度介于45%~60%之間時(shí),為中類(lèi);當(dāng)植被覆蓋度小于45%時(shí),為低類(lèi)。Choudhuryetal與Gilliesetal使用不同的方法和數(shù)據(jù)集,均得到相同的植被覆蓋度估算公式,即
Fcover=(NDVI-NDVI0)/(NDVIs-NDVI0)。他們用該模型對(duì)美國(guó)太平洋地區(qū)的森林覆蓋度進(jìn)行估算,并且采用不同類(lèi)型植被指數(shù),結(jié)合NOAAAVHRR的遙感數(shù)據(jù),估算了該地區(qū)的森林覆蓋度。結(jié)果表明,經(jīng)常用的植被指數(shù)與森林覆蓋度相關(guān)性最高。由此說(shuō)明,植被指數(shù)模型較適用于大尺度的應(yīng)用,比回歸模型更具有普遍的意義。但植被指數(shù)法在小范圍內(nèi)的估算精度低于回歸模型。在應(yīng)用植被指數(shù)模型時(shí),由于可見(jiàn)光和近紅外波段對(duì)植物反應(yīng)最敏感的波段,因此,目前NDVI值主要是基于這兩個(gè)波段建立的遙感信息。4.2.3像元分解模型法
像元分解模型法的原理是,在某種假定情況下,將遙感圖像中的一個(gè)實(shí)際像元分解成由多個(gè)組分構(gòu)成的遙感數(shù)據(jù)信息,用這些遙感信息構(gòu)建像元分解模型,從而估算出植被覆蓋度。Pech將裸土、灌木等組分信息和植被陰影覆蓋結(jié)合起來(lái),綜合考慮,建立了澳大利亞半干旱灌木林地區(qū)像元分解模型,并對(duì)其植被覆蓋度進(jìn)行估算。在目前的研究中,雖然混合光譜能反映植被光譜與下墊面的一些綜合信息,但是由于各種光譜之間的干擾,使各種光譜被削弱,致使多光譜儀的優(yōu)點(diǎn)很難體現(xiàn)。這也就給成像多光譜儀遙感圖像的應(yīng)用帶來(lái)很大限制。
因此,很多學(xué)者將線性混合理論和混合光譜進(jìn)行應(yīng)用和解釋?zhuān)⒌玫搅溯^好的效果。田靜基于這一理論,將不同物質(zhì)的混合光譜信息分解成單個(gè)波段光譜,然后進(jìn)行線性組合,即:R=aRa+bRb+cRc+…(1)式中:a、b、c
等表示的是權(quán)重,Ra、Rb、Rc表示的是單一物質(zhì)的反射率。在實(shí)際運(yùn)用時(shí),權(quán)重值實(shí)際上是各單獨(dú)成分占混合范圍的總面積比,因此,植被覆蓋度有明顯的相關(guān)性。其解釋為:各單一成分的光譜信息是實(shí)際存在的,而混合光譜信息是各單一成分光譜信息傳入傳感器后產(chǎn)生的。根據(jù)這一理論基礎(chǔ),大量學(xué)者提出了線性光譜模型來(lái)估算植被覆蓋度。線性分解模型是目前應(yīng)用最廣泛的分解模型。它首先假定像元信息是由各組分信息線性耦合而成的,如果一個(gè)組分到達(dá)傳感器的像元信息與很多分信息發(fā)生相互作用,就會(huì)形成非線性的耦合。但這種線性和非線性的耦合是建立在同一理論基礎(chǔ)上的,即無(wú)論是線性混合還是非線性混合,都是多次反射的特殊情況。線性分解法最大的缺點(diǎn)是,當(dāng)區(qū)域內(nèi)地物類(lèi)型的數(shù)量大于遙感數(shù)據(jù)波段量時(shí),就會(huì)產(chǎn)生較大的偏差。
馬超飛、Quarmby等都分別針對(duì)不同的區(qū)域,利用線性分解法的理論,建立了相應(yīng)的線性混合模型,很好了驗(yàn)證這一點(diǎn)。在線性像元分解模型法中,有一個(gè)最簡(jiǎn)單的模型,即像元二分模型。它假設(shè)一個(gè)像元的信息可以分為土壤與植被兩部分。由遙感傳感器傳回的信息(S)可以分解為植被的貢獻(xiàn)值Sv和土壤的貢獻(xiàn)值Ss。
S=Sv+Ss(2)在由土壤和植被構(gòu)成的混合像元中,植被覆蓋所占的比例就是這該像元的植被覆蓋度(用
fc表示),與之對(duì)應(yīng)的就是土壤所占的比例。對(duì)于一個(gè)由土壤與植被兩部分組成的混合像元,像元中的植被覆蓋面積比例即為該項(xiàng)元的植被覆蓋度f(wàn)c,而土壤覆蓋的面積比例為
1-fc。Sv=fc·Sveg(3)Ss=(1-fc)·Ssoil(4)式中:Sveg為純植被覆蓋貢獻(xiàn)的信息,Ss為純土壤信息貢獻(xiàn)值;Sv為混合像元中植被的貢獻(xiàn)值。將式(3)和式(4)代入式(2)可得:S=fc·Sveg+(1-fc)·Ssoil(5)由公式(4)可推出植被覆蓋度的計(jì)算公式:S=fc·Sveg+(1-fc)·Ssoil(6)其中,Ssoil與Sveg都是參數(shù),因而可以根據(jù)式(6),利用遙感信息來(lái)估算植被覆蓋度。根據(jù)像元二分模型,一個(gè)像元的NDVI值可以表達(dá)為由綠色植被部分所貢獻(xiàn)的信息NDVIveg與裸土部分所貢獻(xiàn)的信息NDVIsoil這兩部分的組合,以歸一化植被指數(shù)作為反映其像元信息的指標(biāo)。代入式(6)得:NDVI=fc·NDVIveg+(1-fc)·NDVIsoil
(7)由此導(dǎo)出植被覆蓋度的計(jì)算公式:fc=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)(8)
由于像元二分模型其理論簡(jiǎn)單,制約條件少,所以應(yīng)用比較廣泛。如
ZRibi在半干旱地區(qū)利用該模型對(duì)雷達(dá)信號(hào)進(jìn)行分解,求得該地區(qū)的植被覆蓋度。QiJ將植被指數(shù)分解為純植被和無(wú)植被的植被指數(shù)代入該模型,對(duì)美國(guó)西南部植被覆蓋的時(shí)空變化進(jìn)行研究,結(jié)果表明,在對(duì)遙感圖像不做大氣糾正的情況下,該模型仍然有較高的精度??偟膩?lái)說(shuō),像元二分模型估算植被動(dòng)態(tài)變化方面結(jié)果可靠。但是,由于像元二分模型要求遙感數(shù)據(jù)分辨率較高,且在森林遙感中很難找到純光譜像元,所以該方法不適合森林的覆蓋度的估算。5總結(jié)
(1)地表實(shí)測(cè)法由于人力、物力等諸多因素的制約,不適合在較大范圍內(nèi)單獨(dú)應(yīng)用。伴隨著遙感技術(shù)的發(fā)展,地表實(shí)測(cè)法已逐漸變成了遙測(cè)較大范圍內(nèi)植被覆蓋度的輔助手段。它對(duì)于建立植被覆蓋度經(jīng)驗(yàn)?zāi)P图斑b感覆蓋度監(jiān)測(cè)的精度評(píng)價(jià)和驗(yàn)證有著很重要的意義。
(2)由于遙感估算植被覆蓋度的理論、研究背景各不相同,因此所需用的植被指數(shù)或數(shù)據(jù)源等信息也各不相同?;貧w模型法對(duì)實(shí)測(cè)數(shù)據(jù)的依賴(lài)性較強(qiáng),因此盡管小范圍內(nèi)有較高精度,但在應(yīng)用上受到很大的制約。植被指數(shù)法與像元分解法,由于不受實(shí)測(cè)數(shù)據(jù)的制約,目前使用比較廣泛,但在實(shí)際應(yīng)用中,仍應(yīng)根據(jù)地表情況,與其他方法綜合使用,以進(jìn)一步提高植被覆蓋度的提取精度。6文獻(xiàn)翻譯一.基于數(shù)碼相機(jī)測(cè)量數(shù)據(jù)及遙感模型對(duì)植被覆蓋度的估算EstimationofFractionalVegetationCoverBasedonDigitalCameraSurveyDataandaRemoteSensingModelHUZhen-qi1,HEFen-qin1,YINJian-zhong2,LUXia1,TANGShi-lu1,WANGLin-lin1,LIXiao-jing11.土地復(fù)墾和生態(tài)修復(fù)學(xué)會(huì),中國(guó)礦業(yè)大學(xué)。中國(guó),北京1000832.測(cè)量、制圖與遙感信息工程重點(diǎn)實(shí)驗(yàn)室,中國(guó),湖北武漢430079摘要:本文的目標(biāo)是改善植被覆蓋度的監(jiān)測(cè)速度與精度,當(dāng)fcmax(植被覆蓋度的最大值)和fcmin(植被覆蓋度的最小值)不是約等于100%和0%時(shí),本文主要集中于對(duì)植被覆蓋度進(jìn)行估算,分別由于使用中等或低空間分辨率的遙感圖像。與此同時(shí),我們提出了一個(gè)基于從數(shù)碼相機(jī)(DC)測(cè)量數(shù)據(jù)與二分像元模型中得到的隨機(jī)的一組植被覆蓋度的最大和最小參數(shù)來(lái)估算植被覆蓋度的新方法。結(jié)果表明,該方法用于植被覆蓋度的監(jiān)測(cè)是方便有效且精確地,最大誤差是0.172,且數(shù)碼相機(jī)(DC)測(cè)量數(shù)據(jù)和遙感模型的估算參數(shù)之間的相關(guān)系數(shù)是0.974。其余的數(shù)碼測(cè)量數(shù)據(jù)可以用作檢驗(yàn)植被覆蓋度精讀度數(shù)據(jù),通常來(lái)說(shuō),基于數(shù)碼測(cè)量數(shù)據(jù)和遙感模型對(duì)植被覆蓋度的估算是一種全新的發(fā)展趨勢(shì)且值得廣泛應(yīng)用。關(guān)鍵詞:植被覆蓋度;數(shù)碼相機(jī);測(cè)量數(shù)據(jù);二分像元模型1.引言植被覆蓋度對(duì)于評(píng)估生態(tài)環(huán)境是一個(gè)重要的參數(shù)。傳統(tǒng)的生態(tài)參數(shù)通過(guò)這些方法進(jìn)行評(píng)估,例如地面測(cè)量,包括:目視估測(cè)樣點(diǎn)、采樣點(diǎn)、計(jì)量法。這些在野外操作的方法不方便,且對(duì)植被覆蓋度的快速估算有困難。遙感技術(shù)的快速發(fā)展為植被覆蓋度的估算提供了一個(gè)新的趨勢(shì)且特別對(duì)大范圍監(jiān)測(cè)植被覆蓋度提供了可能性。目前,植被覆蓋度估算的方法通過(guò)遙感數(shù)據(jù)采用回歸模型,植被指數(shù)方法和二分像元模型,回歸模型受大量條件所限制且只適合于特定區(qū)域和植被類(lèi)型,它不用更傳統(tǒng)的應(yīng)用作出重要的共同原因。然而,植被指數(shù)和二分像元模型的原理簡(jiǎn)單。這兩種方法比回歸模型更為普遍接受且適合廣泛使用。對(duì)于一些植被覆蓋度低且遙感數(shù)據(jù)分辨率低得區(qū)域,基于遙感的植被覆蓋度的監(jiān)測(cè)經(jīng)常需要用測(cè)量數(shù)據(jù)來(lái)驗(yàn)證。
隨著數(shù)字圖像處理與攝影技術(shù)的顯著改善現(xiàn)在有許多高質(zhì)量的DCs,這使得植被覆蓋度的地面測(cè)量更方便、精確。有文獻(xiàn)指出,基于DC對(duì)植被覆蓋度的測(cè)量可能成為更適用的方法。然而,只有少數(shù)案例來(lái)證實(shí)這點(diǎn),因此,我們?cè)噲D估算基于DC測(cè)量數(shù)據(jù)和遙感模型估算植被覆蓋度。本次研究的目的是提高植被覆蓋度監(jiān)測(cè)的精度以及評(píng)估基于DC對(duì)植被覆蓋度測(cè)量潛力。1.引言
植被覆蓋度對(duì)于評(píng)估生態(tài)環(huán)境是一個(gè)重要的參數(shù)。傳統(tǒng)的生態(tài)參數(shù)通過(guò)這些方法進(jìn)行評(píng)估,例如地面測(cè)量,包括:目視估測(cè)樣點(diǎn)、采樣點(diǎn)、計(jì)量法。這些在野外操作的方法不方便,且對(duì)植被覆蓋度的快速估算有困難。
遙感技術(shù)的快速發(fā)展為植被覆蓋度的估算提供了一個(gè)新的趨勢(shì)且特別對(duì)大范圍監(jiān)測(cè)植被覆蓋度提供了可能性。目前,植被覆蓋度估算的方法通過(guò)遙感數(shù)據(jù)采用回歸模型,植被指數(shù)方法和二分像元模型,回歸2.數(shù)碼相機(jī)測(cè)量原理
最近,基于DC的植被覆蓋度的測(cè)量已逐漸成為一個(gè)嶄新的且公認(rèn)的方法,這是一種廉價(jià)、高效且快捷的方法,用DC測(cè)量對(duì)植被覆蓋度的計(jì)算原理是基于來(lái)自通過(guò)植被層狀況遙感傳感器的測(cè)量光的應(yīng)用。DC鏡頭將它的射線聚集于電荷耦合器(CCD),組成的濾色陣列對(duì)R和NIR電磁波敏感,它可以對(duì)亮度值進(jìn)行直接測(cè)量,濾色陣列記錄的輻射參數(shù)從0.615微米到1.05微米。臨近色濾陣列元素對(duì)不同波長(zhǎng)的響應(yīng),R在0.6微米-0.75微米之間,NIR在0.75微米到1.05微米之間。由于裸露的土壤表層的峰值和谷值具不顯著的發(fā)射率,土壤的反射光譜曲線是平滑的。有因此,R和NIR光譜譜帶之間的亮度差異是不明顯的。然而,植被反射光譜曲線的勻稱(chēng)性(規(guī)則性)是明顯地且唯一的:綠色植被具有高近紅外光譜和低紅外光譜的特點(diǎn)。因此,很容易區(qū)分來(lái)自DC的土壤和植被近紅外光譜信息;這對(duì)于植被覆蓋度的估算是方便的。
本次研究中的數(shù)碼相機(jī)是一架奧林匹斯C-730UltraZoom(超變焦)全自動(dòng)光學(xué)相機(jī)。它也有一個(gè)5-7米的遙控操作距離。此數(shù)碼相機(jī)記錄尺寸496×365像素的圖像,用一個(gè)8.5mm的鏡頭和一個(gè)8.5mm焦距。此外,CCD有一個(gè)31.5×24.25°的角視場(chǎng),在1米的距離,這等于一個(gè)565mm×429mm大小的圖像,同樣地,當(dāng)它需要一個(gè)垂直的畫(huà)面時(shí),DCC數(shù)碼相機(jī)的焦距需固定在28mm。3遙感模型的建立
基于之前色研究經(jīng)驗(yàn),我們選擇二分像元模型來(lái)估算植被覆蓋度,二分像元模型是.一種簡(jiǎn)單且實(shí)用的遙感模型?;诩僭O(shè)是一個(gè)像元的表面覆蓋著植被和非植被。歸一化植被指數(shù)也是一種從遙感傳感器接收物體表面的光譜信息并反映地表植被狀況的定量計(jì)算值。該表達(dá)式是NDVI=NIR–R/NIR+R(1)其中,NIR和R代表在遙感圖像中近紅外反射率值和紅色波段反射率值。
根據(jù)二分像元模型,來(lái)自綠色植被信息的NDVI值得一個(gè)像元表示為NDVIveg,來(lái)自裸露土壤信息的NDVI值得一個(gè)像元表示為NDVIsoil。因此,植被覆蓋度估算的遙感模型被定義為:fc=NDVI-NDVIsoil/NDVIveg-NDVIsoil(2)
其中,NDVIsoil和NDVIveg代表裸露土壤或無(wú)植被覆蓋像元和純植被像元。理論上,大部分裸露土壤表面的NDVIsoil值由于受多種因素的影響介于0.1到0.2之間。NDVIveg代表純植被像元的最大值。然而,由于不同植被類(lèi)型的影響,NDVIveg也隨著時(shí)間和空間而改變。因此,在這個(gè)模型中,NDVIsoil和NDVIveg值得確定已成為一個(gè)關(guān)鍵問(wèn)題。實(shí)際上,NDVIsoil和NDVIveg的值有以下關(guān)系,如公式(3)和(4)。NDVIsoil=fcmax×NDVImin-fcmin×NDVImax/fcmax-fcmin(3)NDVIveg=(1-fcmin)×NDVImax-(1-fcmax)×NDVImin/fcmax-fcmin(4)式中,fcmax和fcmin分別代表遙感圖像的最大和最小值。這些方程,NDVIsoil和NDVIveg值得確定轉(zhuǎn)換為4個(gè)參數(shù)值得確定(也就是fcmin、fcmax
、NDVImax
、NDVImin)。根據(jù)fc的最大值和最小值的不同,有兩種情況:1)遙感影像的空間分辨率相對(duì)較高,純像元很容易找到。因此,fcmax和fcmin可能約等于100%和0%,式中,NDVIsoil=NDVImin;NDVIveg=NDVImaxfc的估算轉(zhuǎn)化為方程(5)fc=NDVI-NDVImin/NDVImax-NDVImin(5)對(duì)于這種情況,已經(jīng)有了許多相關(guān)研究及研究成果,本文將不作強(qiáng)調(diào)。2)遙感影像空間分辨率相對(duì)較低,純像元不易發(fā)現(xiàn),因此,fcmax和fcmin不等于100%和0%。作為結(jié)果,fc的估算需要經(jīng)過(guò)測(cè)量數(shù)據(jù)的驗(yàn)證。在這種情況下,很少有對(duì)檢驗(yàn)植被覆蓋度的相關(guān)研究。因此,這篇論文主要集中于第二種情況的研究。我們基于DC(數(shù)碼相機(jī))測(cè)量數(shù)據(jù)和一個(gè)遙感模型討論植被覆蓋度f(wàn)c的估算,以填補(bǔ)這一領(lǐng)域的空白并實(shí)現(xiàn)數(shù)碼相機(jī)(DC)的潛力。4.案例研究4.1研究區(qū)域和數(shù)據(jù)來(lái)源
我們選擇中國(guó)北京的門(mén)頭溝區(qū)的一個(gè)廢棄的煤礦用地作為本文的案例研究。煤礦的長(zhǎng)期使用導(dǎo)致了植被破壞和環(huán)境惡化。我們所選用地?cái)?shù)據(jù)是2004年5月23日的軌道數(shù)量279/269的法國(guó)SPOT-5衛(wèi)星數(shù)據(jù),這有無(wú)云層覆蓋的相當(dāng)高質(zhì)量的數(shù)據(jù)。選用了2003年0.5m分辨率航空影像及1:10000比例尺的數(shù)字高程模型。4.2數(shù)據(jù)處理
這一部分主要包括ortho-correction(正校正),遙感影像的幾何校正和DC(數(shù)碼相機(jī))測(cè)量數(shù)據(jù)的監(jiān)督分類(lèi)。4.2.1遙感影像的校正
由于SPOT-5衛(wèi)星是測(cè)視影像,必須首先進(jìn)行正校正,航空?qǐng)D像作為地面控制點(diǎn)(GCP)采集的參考圖像。與此同時(shí),由于用PCI外部控制器接口(PeripheralComponentInterconnect)外部設(shè)備互連總線軟件中的OrthoEngine模型以及現(xiàn)有的DEM,正校正(ortho-correction)基于一個(gè)共線性方程校正進(jìn)行。然后,必須進(jìn)行幾何圖形校正,航空影像也被作為參考圖像。采用北京-54坐標(biāo)作為投影系統(tǒng)及36GCPs(地面控制點(diǎn)),基于三次多項(xiàng)式擬合的方法調(diào)整計(jì)算以及對(duì)線性重采樣的雙線性插值法進(jìn)行幾何校正,經(jīng)過(guò)校正之后的均方差(RMS)少于0.5像素,這滿(mǎn)足精度要求。4.2.2調(diào)查數(shù)據(jù)的獲取和處理
我們選擇門(mén)頭溝區(qū)的Wangping鎮(zhèn)這個(gè)典型的生態(tài)模型區(qū)的兩個(gè)采樣點(diǎn),植被的主要類(lèi)型是灌木(如,Langdangye)。采樣采用了垂直攝影法,具體步驟如下:1)首先我們選用1×1像元大小的采樣點(diǎn),(代表面積大小為10米×10米)。然后我們用過(guò)DC(數(shù)碼相機(jī))在地面上的一個(gè)垂直角度基于平均值拍了許多采樣點(diǎn)的數(shù)碼相片。同時(shí),用GPS(全球定位系統(tǒng))來(lái)獲取采樣點(diǎn)的地理坐標(biāo)。2)由于中心投影攝影造成了數(shù)碼相片邊緣大的變形,三分之二的長(zhǎng)度和寬度需要從數(shù)碼相片的中心被裁剪,以便能獲取精確的植被覆蓋率的測(cè)量數(shù)據(jù)并減小邊緣變形誤差。3)用大規(guī)模的數(shù)碼攝影和一個(gè)容易分辨地面特征的簡(jiǎn)單類(lèi)型,為了監(jiān)督分類(lèi)簡(jiǎn)單明了,對(duì)研究區(qū)域作了選擇。監(jiān)督分類(lèi)適合于研究區(qū)的植被和裸露土壤的數(shù)碼相機(jī)和提取信息。該統(tǒng)計(jì)植被區(qū)取自我們的分類(lèi)圖,我們可以在DC(數(shù)碼相機(jī))調(diào)查的幫助下,從這一區(qū)域原始數(shù)字相片分類(lèi)中計(jì)算fc(植被覆蓋度)。4)計(jì)算fc(植被覆蓋度)的平均值。4.3基于遙感模型的(fc)植被覆蓋度的估算
植被覆蓋度估算的主要觀點(diǎn)是基于DC測(cè)量數(shù)據(jù)從遙感模型中獲取fcmax和fcmin值。此外,其他DC測(cè)量數(shù)據(jù)用來(lái)驗(yàn)證fc估算的精度,這一過(guò)程中具體步驟如下:1)基于公式(1)計(jì)算遙感圖像的NDVI值;2)從DC(數(shù)碼相機(jī))測(cè)量數(shù)據(jù)中任意選取一組fc的最大和最小值分別作為fcmax和fcmin值;3)借用GPS定位點(diǎn)得幫助,從遙感圖像模型中找到fcmax和fcmin相對(duì)應(yīng)的像元NDVI值,并把它們標(biāo)注為NDVImax和NDVImin,其它測(cè)量數(shù)據(jù)用于檢驗(yàn)。4)基于公式(3)和(4)的fcmax、fcmin、NDVImax和NDVImin值計(jì)算NDVIsoil和NDVIveg值;5)用公式(2)中的NDVIsoil和NDVIveg估算研究區(qū)的fc。這是基于在ENVI遙感軟件中的波段運(yùn)算的函數(shù);6)基于密度切片的上一步從fc的等級(jí)中獲取一個(gè)fc等級(jí)圖。
圖1基于DC測(cè)量數(shù)據(jù)和遙感模型的fc估算等級(jí)圖
下面的圖2顯示了基于DC測(cè)量數(shù)據(jù)和遙感模型的fc估算的工作流程。
圖2植被覆蓋度估算和分級(jí)的流程圖4.4結(jié)果分析
對(duì)研究區(qū)植被覆蓋度的等級(jí)圖進(jìn)行分析,可以看出,該廢棄煤礦用地的植被覆蓋度在2004年相對(duì)較高。超過(guò)90%的廢棄地的植被覆蓋度居于0.6到1之間,表明該區(qū)域植被覆蓋度較高。然而,居民區(qū)和獨(dú)立煤礦的fc相對(duì)較低,介于0到0.4之間,表明了一個(gè)低得植被覆蓋度,主要原因是煤礦的長(zhǎng)期使用導(dǎo)致了煤礦附近植被的嚴(yán)重破壞和環(huán)境的惡化。5.精度的檢驗(yàn)和評(píng)估
為了基于DC測(cè)量數(shù)據(jù)和遙感模型來(lái)檢驗(yàn)fc(植被覆蓋度)估算的精度以及比較fcmax≠100%,fcmin≠0%和fcmax≈100%。fcmin≈0%之間植被覆蓋度估算的差異,植被覆蓋度的估算滿(mǎn)足fcmax和fcmin約等于100%和0%這一假設(shè)。在公式(5)中對(duì)fc進(jìn)行計(jì)算。fc的等級(jí)圖如圖3所示,表1展示了定量數(shù)據(jù)對(duì)比,該結(jié)果表明,在DC測(cè)量數(shù)據(jù)的幫助之下,當(dāng)fcmax≠100%且fcmin≠0%時(shí),通過(guò)遙感模型的fc估算的精度相對(duì)較高,它的最大誤差是-0.172,DC測(cè)量數(shù)據(jù)和估算值之間的相關(guān)系數(shù)是0.974.另一方面,如果fcmax和fcmin假定為100%和0%,用最大誤差0.380和相關(guān)系數(shù)0.540的fc估算的誤差相對(duì)較大。
圖3遙感模型估算的fc等級(jí)圖表1來(lái)自遙感模型的DC測(cè)量數(shù)據(jù)和估算值之間的對(duì)比6.結(jié)論
本次研究結(jié)果表明,低植被覆蓋度和低空間分辨率的遙感影像,通常不易找到一個(gè)純像元。因此,fcmax和fcmin不能很容易被認(rèn)為是100%和0%,有必要考慮研究區(qū)的實(shí)際情況,否則將造成大的估算誤差。
本次研究中所采用的方法,即基于DC測(cè)量數(shù)據(jù)和遙感模型的fc的估算,不僅方便快捷,而且精確度高。此外,它還可以通過(guò)遙感模型用DC測(cè)量數(shù)據(jù)對(duì)fc估算的精度進(jìn)行檢驗(yàn)。
隨著數(shù)字處理和攝影技術(shù)的快速發(fā)展,基于高品質(zhì)DC的fc地面測(cè)量變得更加方便與精確。因此,基于DC測(cè)量數(shù)據(jù)和遙感模型的fc的估算是一個(gè)嶄新的發(fā)展趨勢(shì)并值得進(jìn)一步廣泛應(yīng)用。二.基于不同光譜指數(shù)對(duì)植被稀疏區(qū)域的植被覆蓋度估算的精度對(duì)比ComparisontheaccuraciesofdifferentspectralindicesforestimationofvegetationcoverfractioninsparsevegetatedareasSusanBaratia,1,BehzadRayegania,*,MehdiSaatib,2,AlirezaSharific,MasoudNasriba.青年科學(xué)家俱樂(lè)部,伊斯蘭自由大學(xué),阿德斯坦分院,伊朗,伊斯法罕b.伊斯蘭自由大學(xué),阿德斯坦分院,伊朗,伊斯法罕c.測(cè)量和測(cè)繪學(xué)工程系,德黑蘭,伊朗德黑蘭大學(xué)關(guān)鍵詞:植被覆蓋度;遙感;LISSIII(IRS-P6衛(wèi)星LISS3圖像);植被指數(shù)摘要對(duì)樹(shù)冠生物物理變量的定量估算在不同的研究如氣象學(xué)、農(nóng)業(yè)以及生態(tài)學(xué)中都有非常重要的意義;因此,對(duì)這些變量的時(shí)空分布進(jìn)行研究是非常有益的,與此同時(shí),在對(duì)大范圍區(qū)域進(jìn)行植被覆度估算時(shí),遙感技術(shù)被認(rèn)為是重要的信息來(lái)源。目前,在對(duì)植被特征的遙感估算中,最廣泛采用的是光譜指數(shù)。但相比植被稀疏區(qū)域,它更多地用于反應(yīng)土壤和巖石,這使得對(duì)植被信號(hào)的分離產(chǎn)生困難。因此,在本次研究中,測(cè)量了一個(gè)沙漠區(qū)域的植被覆蓋度,并對(duì)20種植被指數(shù)進(jìn)行了評(píng)估,分為了五個(gè)最合適的類(lèi)別,或指示沙漠植被,這五個(gè)類(lèi)別包括:(1)常規(guī)比例和微分(差分)指數(shù)如歸一化植被指數(shù)(2)修正指數(shù)及來(lái)自傳統(tǒng)的指標(biāo)如NDVIc和GNDVI(綠色歸一化植被指數(shù))(3)土壤反射率調(diào)節(jié)指數(shù)如SAVI(土壤調(diào)節(jié)植被指數(shù)SoilAdjustedVegetationIndice)(4)基于三個(gè)窄條帶的三角指數(shù),在它們的方程中(綠色、紅色以及近紅外光譜)如TVI(組織速度成像TissueVelocityImaging)(5)非常規(guī)比例和差分指數(shù)如CI根據(jù)這項(xiàng)研究結(jié)果,DVI(差分植被指數(shù)differentvegetationindice)指數(shù)的決定系數(shù)(R2)為0.668,顯示出了對(duì)植被覆蓋度的最好估計(jì)。但是根據(jù)沙漠區(qū)域的稀疏植被以及本研究的結(jié)果來(lái)看,這些指標(biāo)中沒(méi)有一個(gè)能夠單獨(dú)來(lái)精確地估算植被覆蓋度,然而,在一個(gè)多元回歸模型中輸入這些指數(shù)數(shù)據(jù)來(lái)作一個(gè)適當(dāng)?shù)墓浪闶强赡艿?。使用這種模型能使決定系數(shù)增加到0.797。
1.引言植被覆蓋度對(duì)近地面的能量交換具有重要影響,植被覆蓋度被認(rèn)為是衡量干旱及半干旱區(qū)域土地退化及荒漠化的合適標(biāo)準(zhǔn),且對(duì)它的測(cè)量能夠用來(lái)研究這些過(guò)程(XiaoandMoody,2005)。此外,對(duì)樹(shù)冠生物物理變量,特別是植被覆蓋度進(jìn)行定量估算,在不同的研究中如氣象學(xué)、農(nóng)業(yè)以及生態(tài)學(xué),都是很重要的;因此,研究這些變量的時(shí)空分布將大有益處(LawrenceandRipple,1998;Houborgetal.,2007)。在對(duì)大尺度范圍內(nèi)的植被覆蓋度進(jìn)行估算時(shí),遙感是一種重要的數(shù)據(jù)來(lái)源(XiaoandMoody,2005),基于衛(wèi)星的指數(shù)被用在許多估算植被覆蓋度的研究中(Gilabertetal.,2002;Kalleletal.,2007;Jiangetal.,2008)。通過(guò)運(yùn)用這些指數(shù),許多植被參數(shù)如葉面積、生物量和生物活性得以估算(BaretandGuyot,1991;Verrelstetal.,2008)?;诩t外和近紅外反射率的光譜植被指數(shù)與葉面積和樹(shù)冠覆蓋有著高度相關(guān)性(BrogeandLeblanc,2000)。然而,在植被稀疏區(qū)域,土壤和沙子的反射率要比植被的反射率高得多,所以,植被覆蓋反射率的探測(cè)是困難的。因此,土壤反射率調(diào)整指數(shù)如土壤調(diào)節(jié)植被指數(shù)(SAVI),優(yōu)化土壤調(diào)節(jié)植被指數(shù)(OSAVI)以及修正土壤調(diào)節(jié)植被指數(shù)(MSAVI)已被開(kāi)發(fā)(Karnielietal.,2001;Gilabertetal.,2002;ShupeandMarsh,2004)。本次研究中,通過(guò)使用由各種不同的植被指數(shù)組成的20種不同的植被覆蓋指數(shù),如簡(jiǎn)單的差分指數(shù)(e.g.DVI),單比指數(shù)(如SR)以及歸一化指數(shù)(如NDVI),土壤調(diào)節(jié)指數(shù)(如SAVI)以及三角指數(shù)(如MTVI)對(duì)植被覆蓋度進(jìn)行了估算并對(duì)它們的精度進(jìn)行了比較。
2.研究區(qū)域
研究區(qū)域位于伊朗中部地區(qū),伊斯法罕市附近,占地面積2118公頃(如圖1所示)。根據(jù)Bagnouls和Gaussen的氣候分類(lèi)系統(tǒng)(BagnoulsandGaussen,1957),本地存在荒漠氣候,依據(jù)Emberger氣候分類(lèi)系統(tǒng)(Emberger,1955),該區(qū)域?qū)儆诟衫湫蜌夂颉Q芯繀^(qū)7月出現(xiàn)最高月平均氣溫46℃,1月出現(xiàn)最低月平均氣溫為-13℃,年平均氣溫為19℃。研究區(qū)的大部分區(qū)域已經(jīng)變?yōu)槟翀?chǎng)(草地),一些接近河流和季節(jié)性河道的分散區(qū)域有農(nóng)場(chǎng)分布。白艾草(艾屬,草本)作為優(yōu)勢(shì)種分布于研究區(qū)的大部分地區(qū)并且是僅存的物種。在一些地方其它物種如蒿屬植物(山艾,艾屬),木香(雀苣屬,東方型),敘利亞蕓香(駱駝蓬),Pteropyrumaucheri,檉柳(檉柳屬),刺葉屬,也觀察到Forssk(Lounaeaspinosa)。3.衛(wèi)星數(shù)據(jù)
本次研究采用了IRS-LISSIII影像,該衛(wèi)星圖像使用50個(gè)地面控制點(diǎn)作為地理參考坐標(biāo),已獲取了0.248像素的均方根誤差(RMSe)。4.地面數(shù)據(jù)
植被覆蓋度的地面測(cè)量開(kāi)始于2010年6月3日,采樣點(diǎn)為36m長(zhǎng)的正方形區(qū)域,來(lái)覆蓋影像數(shù)據(jù)的像元大小,對(duì)研究區(qū)進(jìn)行了調(diào)查,確定了所有植被類(lèi)型。在研究區(qū)的大部分區(qū)域白艾草(艾屬,草本)作為優(yōu)勢(shì)種。采樣點(diǎn)的位置選擇在這些由他們組成植被類(lèi)型??偣灿?0個(gè)采樣點(diǎn)(圖3所示),為了測(cè)量植被覆蓋度,采用了一些之間距離為6米的平行樣帶(圖4所示)。在每個(gè)樣帶中,樹(shù)冠接觸到樣帶的位置被記錄且測(cè)量其所接觸的長(zhǎng)度。然后,接觸長(zhǎng)度的平均百分比占整個(gè)樣帶長(zhǎng)度的百分比被用作采樣點(diǎn)的植被覆蓋度,在每個(gè)相對(duì)應(yīng)的像元中,綠色波段、紅色波段、近紅外波段以及短波紅外波段的參數(shù)已經(jīng)被記錄在案。5.研究方法本研究中,研究了五個(gè)不同類(lèi)型的植被指數(shù):(1)常規(guī)比率和差分指數(shù)如單比指數(shù)(SR),歸一化植被指數(shù)NDVI,差分植被指數(shù)DVI以及紅外百分比植被指數(shù)(IPVI);(2)校正并改進(jìn)的常規(guī)指數(shù),例如修正單比指數(shù)(SRc),改進(jìn)單比指數(shù)(MSR),NDVIc,GNDVI,比值植被指數(shù)(RDVI)以及非線性指數(shù)(NLI);(3)土壤調(diào)節(jié)植被指數(shù)如SAVI,優(yōu)化土壤調(diào)節(jié)植被指數(shù)(OSAVI)以及改進(jìn)的土壤調(diào)節(jié)植被指數(shù)(MSAVI);(4)基于綠色、紅色、紅外波段的三角指數(shù)如TVI(組織速度成像),改進(jìn)的三角測(cè)量植被指數(shù)-1(MTVI1)和MTVI2;(5)非常規(guī)比率和差分指數(shù)如歸一化紅外指數(shù)(NDII),比表面積植被指數(shù)(SLAVI),CI和歸一化冠層指數(shù)(NCI)。上述指數(shù)見(jiàn)于表1。表1中,RSWIR,RNIR,
RRED
和RGREEN分別是短波紅外、近紅外、紅色以及綠色波段的光譜反射率。同時(shí),最小和最大是最小反射率和最大反射率,或是在相應(yīng)的光譜范圍之內(nèi)的數(shù)值。對(duì)于40個(gè)采樣點(diǎn),估算了所介紹的所有指數(shù)與植被覆蓋度的相關(guān)性。6.結(jié)果
對(duì)植被指數(shù)與植被覆蓋度之間的相關(guān)性進(jìn)行了評(píng)估,并分為了5個(gè)植被類(lèi)型。6.1常規(guī)比例和差分指數(shù)
根據(jù)所有的指數(shù)得出結(jié)果,如表2所示,依據(jù)表2,植被覆蓋與常規(guī)比例以及差分指數(shù)之間的關(guān)聯(lián)性比其他指數(shù)要大,此外,在所有指數(shù)之中,DVI(差分植被指數(shù))相關(guān)系數(shù)最大。通過(guò)葉綠素在紅外區(qū)域的電磁波的吸收以及在近紅外區(qū)域的高反射率是在這類(lèi)指數(shù)中存在高相關(guān)系數(shù)(Tucker,1980)。雖然NDVI已在許多研究中被運(yùn)用,但是在植被覆蓋度高地區(qū)域,這個(gè)指數(shù)是飽和的也與植被生物物理關(guān)系存在非線性相關(guān)(Haboudaneetal.,2004;VescovoandGianelle,2008;Jiangetal.,2008;BaretandGuyot,1991;Gitelson,2004)。由于研究區(qū)域的植被覆蓋度低;這個(gè)指數(shù)是不飽和的,如表3所示,6.2糾正并改進(jìn)的常規(guī)指數(shù)
根據(jù)植被覆蓋度與NDVI之間的非線性相關(guān),基于植被覆蓋度和植被指數(shù)之間的線性相關(guān)性(RougeanandBreon,1995)提出了RDVI的兩個(gè)新指數(shù),(Chen,1996)提出了MSR。雖然MSR指數(shù)對(duì)植被覆蓋度的敏感性更大,但是根據(jù)表2,MSR指數(shù)的敏感性要低于它的導(dǎo)數(shù)指數(shù)(SR)。根據(jù)表3,對(duì)于線性、二次和三次關(guān)系RDVI和植被覆蓋度之間的決定相關(guān)性,分別是0.637、0.659和0.663。然而,根據(jù)Rougean和Breon(1995)報(bào)告的結(jié)果表明,RDVI指數(shù)和植被覆蓋度之間的關(guān)聯(lián)比MSR和植被覆蓋度之間的關(guān)聯(lián)更具線性?;诟倪M(jìn)的歸一化植被指數(shù),
NDVIc和GNDVI指數(shù)比NDVI有較低的決定關(guān)聯(lián)性。在植被稀疏區(qū)域?qū)χ脖桓采w變化運(yùn)用綠色波段,看起來(lái)減少了植被指數(shù)的敏感性,在這個(gè)類(lèi)型中NLI指數(shù)有最低的相關(guān)性。依據(jù)研究區(qū)的低植被覆蓋以及近紅外范圍的高土壤反射率,(圖5所示),對(duì)于植被覆蓋度變化,通過(guò)調(diào)整近紅外反射率,NLI指數(shù)的敏感性已經(jīng)降低了。(圖5不同光譜波段的反射量)6.3土壤反射率調(diào)整指數(shù)
為了減少背景的影響,Huete(1988)提出了SAVI指數(shù)。這個(gè)指數(shù)的方程中(表1),L是植被覆蓋密度的函數(shù)。在這個(gè)研究中,所有采樣點(diǎn)的植被覆蓋度的平均值已經(jīng)被用來(lái)估算L參數(shù),得出L=0.86853。如表2所示,NDVI和SAVI的相關(guān)系數(shù)幾乎是相同的。Huete(1988)已經(jīng)將L=0.5作為L(zhǎng)的最佳值,但是相關(guān)系數(shù)并沒(méi)有顯著提高。這是因?yàn)閷?duì)所有的樣點(diǎn)采用唯一的L值。這個(gè)結(jié)果將得不到提高,通過(guò)使用OSAVI和NDVI的相關(guān)系數(shù),取得了相同的結(jié)果,SAVI和OSAVI幾乎是相似的。因此,以前的植被覆蓋值對(duì)于確定精確地L值是必需的(Huete,1988)。為了解決這個(gè)問(wèn)題,Qietal,1994年提出了MSAVI指數(shù),然而,這項(xiàng)研究的結(jié)果顯示從MSAVI指數(shù)獲得的相關(guān)系數(shù)低于SAVI指數(shù)的相關(guān)系數(shù)。一般來(lái)說(shuō),如L
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市新員工培訓(xùn)知識(shí)
- 《人類(lèi)的“老師”》課件-1
- 25年三月份私人引力子探測(cè)員設(shè)備靈敏度保證條款
- 2025年山東貨運(yùn)從業(yè)資格考試題目大全答案及解析
- 2025年度第一季度應(yīng)急儲(chǔ)備車(chē)輛輪換處置驗(yàn)收協(xié)議
- 2025年外債及配套人民幣借款合同協(xié)議書(shū)
- 2025四月股半導(dǎo)體研發(fā)團(tuán)隊(duì)2025期權(quán)池分配協(xié)議細(xì)則
- 2025合同能源管理協(xié)議
- 塔吊安全管理協(xié)議書(shū)二零二五年
- Vad血管通路裝置安全護(hù)理
- 2024年中國(guó)酸奶乳品市場(chǎng)調(diào)查研究報(bào)告
- 外研版(2025新版)七年級(jí)下冊(cè)英語(yǔ)Unit 3 學(xué)情調(diào)研測(cè)試卷(含答案)
- 2024重慶市中考語(yǔ)文A卷真題寫(xiě)作話題解讀與參考范文-漫畫(huà)“各有千秋”、“給校長(zhǎng)的一封信”
- 《航?;A(chǔ)知識(shí)》課件
- 勸學(xué)類(lèi)3篇文言文中考語(yǔ)文復(fù)習(xí)
- 跟著音樂(lè)游中國(guó)(廣州大學(xué))知到智慧樹(shù)章節(jié)答案
- 存款保險(xiǎn)知識(shí)培訓(xùn)
- “言”“意”相融 讓文學(xué)學(xué)習(xí)走向深入
- 白酒代理招商方案
- 物流公司文件記錄保存制度
- 輸水管線工程施工方案
評(píng)論
0/150
提交評(píng)論