版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Anovelelectronicnoseforsimultaneousquantitative
determinationofconcentrationsandodorintensityanalysisofbenzene,tolueneandethylbenzenemixturesShenJiang,JieminLiu,*DiFang,LuchunYanandChuandongWuReporter:2015.12.05September2015Volume5number96
IntroductionTheE-nosesystermVOCsGassensorarraySignalpretreatment(converter)patternrecognitionsystemresultconvertelectricalsignalstoresponsevaluesAsthemostsignificantcomponentofanartificialolfactionsystem,it'scomposedofmetaloxidesensors,CatalyticcombustiontypeandelectrochemicaltypesensorsPCA,SVM,PLSweremostusedforqualitativeanalysisofmultipleVOCs;ICA,SVDweremostappliedinquantitativeanalysisofasinglegas;ANNswerethemostcommonmethodforodoridentificationanddeterminationofodorintensityLOREMpatternrecognitonsystemBPneuralnetwork1.SensorarrayforE-nose2.E-nosesystemsetup3.Databasemeasurementmethod1.Selectionandcharacterizationofthesensorarray2.Concentrationdetermination3.OdorintensitydeterminationMaterialsandMethodsSensorarrayforE-nose:
workinggases:benzene,tolueneandethylbenzenewithapurity>99.9%(J&KChemicalTechnology,China)GC-FIDanalysiscondition:gaschromatography(GC-2014,Shimadzu,Japan)withaflameionizationdetectorandaRtx-5capillarycolumn(30m×0.25mmID,0.5μmfilmthickness).Acylindricalglasscontainer(volumeof17.3L)withahole(diameterof4cm)initslidworkedasthegasvesselbecomposedofgassensors,atemperatuer(25±0.5℃)sensorahumiditysensor(45-50%).selectsuitablesensors0.4μlworkingsolutioninjectinE-nose20mg/m3gasselectthesensorscanresponseinatleastonesolutiontargetstestthestabilityofthesensorarrayevaporatesensorarray20groupssinglegasestestrespectively.5-200mg/m3,intervalwas10mg/m3determinateconcentrationE-nosedeterminationtrainingdatabase(BPNs)testdata(intestdatabase)210groupsincluding60single,45binary105ternary.5-200mg/m380groupsincluding24single,27binary29ternary.5-200mg/m3testmodicateoptimiseGC-FIDdeterminatethesamesamples'concentrationcomparativeanalysisofGC-FLD'sandE-nose'sresults.thebestparametersoftheneuralnetworkwereascertainedandtheircodeswerewrittenintothefinalsoftwaresystem.pridictionofodorintensitytheodorsensorymethodtheodorintensityrelativeconcentrationsweresameasthetestdataeachcompoundtestedwasrespectivelyinjectedintoanolfactory-bag(3Lvolumeandfullofcleanair),whenallthecompoundshadcompletelyevaporated,anodorsamplewaspreparedbytransferringacertainquantityofthegasfromthepreviousolfactory-bagtoanewbagbyaninjector.Then6sni?ngpanelistsevaluatedthetestinggasaccordingtoOIRSselecttherelativepredicationmodelsandconfirmthecontantsthen,predicationmodelswereemployedtopredicttheodorintensityandtheresultswerecomparedwiththesniffedvalues,thentheoptimummodelsweredetermined.RESULTSPART1:fig.2showsthatsuitablesensorsareMC119,MQ6,TGS2610,2M008andWSP2620.sothese5sensorsareselectedtocompriseinasensorarray.wecanfindAllRSDvalueswerelessthan7%,whichshowthattheexperimenthadgoodprecision.PART2
TheresultsshowthattheE-nosesystemcoulddeterminerespectiveconcentrationsofaromatichydrocarbonmixturessimultaneouslyandithadahighaccuracyrelativetoGC-FID.theBPneuralnetworkused'logsig'and'purelin'astransferfunctionsand'trainlm'
asthetrainingfunctionandwascomposedof210groupsoftrainingdata,a5dimensioninputlayeranda3dimensionoutputlayer,6hiddenlayersand20neuronsineverylayer.PART:3
Weber-FecherlawSothesethreemodelswereusedtopredicttheodorintensity.ThetotalAREwas5.31%,thePearsoncorrelationcoe?cientwas0.947andsignificanceofpaired-sampleT-testwas0.175.Discussion(1)ComparedwithpreviousE-noses,thetestingtimeforonetestwaslessthantenminutes,whichhastheadvantageoffastdetermination.(2)TheconcentrationsweremeasuredbyaBPneuralnetworkwhiletheodorintensitywasmeasuredbyamodelprediction.therelativeerrorsofthechemicalconcentrationsandodorintensitywere9.71%and5.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 探究藥物聯(lián)合應(yīng)用-洞察分析
- 虛假信息識(shí)別與治理-洞察分析
- 音樂行業(yè)歌手培訓(xùn)心得
- 二手車交易合同協(xié)議書范本
- 醫(yī)院藥品銷售臨時(shí)工聘用合同
- 高年級(jí)美術(shù)課程創(chuàng)新實(shí)踐計(jì)劃
- 金融科技應(yīng)用總結(jié)
- 鞋帽庫(kù)存管理算法研究-洞察分析
- 離婚撫養(yǎng)補(bǔ)充協(xié)議范本
- 水利行業(yè)前臺(tái)服務(wù)經(jīng)驗(yàn)分享
- 寶馬Z4汽車說(shuō)明書
- 高周波基礎(chǔ)知識(shí)培訓(xùn)教材課件
- 物流管理與工程案例
- 2023年05月江蘇省宿遷市工會(huì)系統(tǒng)公開招考社會(huì)化工會(huì)工作者筆試題庫(kù)含答案解析
- 油缸使用說(shuō)明(中英)
- 2023年近年中醫(yī)基礎(chǔ)理論考博真題
- GB/T 20984-2022信息安全技術(shù)信息安全風(fēng)險(xiǎn)評(píng)估方法
- 現(xiàn)場(chǎng)制氮?dú)馀e作業(yè)方案及技術(shù)措施
- GB/T 10001.4-2021公共信息圖形符號(hào)第4部分:運(yùn)動(dòng)健身符號(hào)
- 付款操作流程圖
- 基于協(xié)同過(guò)濾算法的電影推薦系統(tǒng)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論