關(guān)于電子鼻新技術(shù)的外文文獻(xiàn)解讀_第1頁(yè)
關(guān)于電子鼻新技術(shù)的外文文獻(xiàn)解讀_第2頁(yè)
關(guān)于電子鼻新技術(shù)的外文文獻(xiàn)解讀_第3頁(yè)
關(guān)于電子鼻新技術(shù)的外文文獻(xiàn)解讀_第4頁(yè)
關(guān)于電子鼻新技術(shù)的外文文獻(xiàn)解讀_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Anovelelectronicnoseforsimultaneousquantitative

determinationofconcentrationsandodorintensityanalysisofbenzene,tolueneandethylbenzenemixturesShenJiang,JieminLiu,*DiFang,LuchunYanandChuandongWuReporter:2015.12.05September2015Volume5number96

IntroductionTheE-nosesystermVOCsGassensorarraySignalpretreatment(converter)patternrecognitionsystemresultconvertelectricalsignalstoresponsevaluesAsthemostsignificantcomponentofanartificialolfactionsystem,it'scomposedofmetaloxidesensors,CatalyticcombustiontypeandelectrochemicaltypesensorsPCA,SVM,PLSweremostusedforqualitativeanalysisofmultipleVOCs;ICA,SVDweremostappliedinquantitativeanalysisofasinglegas;ANNswerethemostcommonmethodforodoridentificationanddeterminationofodorintensityLOREMpatternrecognitonsystemBPneuralnetwork1.SensorarrayforE-nose2.E-nosesystemsetup3.Databasemeasurementmethod1.Selectionandcharacterizationofthesensorarray2.Concentrationdetermination3.OdorintensitydeterminationMaterialsandMethodsSensorarrayforE-nose:

workinggases:benzene,tolueneandethylbenzenewithapurity>99.9%(J&KChemicalTechnology,China)GC-FIDanalysiscondition:gaschromatography(GC-2014,Shimadzu,Japan)withaflameionizationdetectorandaRtx-5capillarycolumn(30m×0.25mmID,0.5μmfilmthickness).Acylindricalglasscontainer(volumeof17.3L)withahole(diameterof4cm)initslidworkedasthegasvesselbecomposedofgassensors,atemperatuer(25±0.5℃)sensorahumiditysensor(45-50%).selectsuitablesensors0.4μlworkingsolutioninjectinE-nose20mg/m3gasselectthesensorscanresponseinatleastonesolutiontargetstestthestabilityofthesensorarrayevaporatesensorarray20groupssinglegasestestrespectively.5-200mg/m3,intervalwas10mg/m3determinateconcentrationE-nosedeterminationtrainingdatabase(BPNs)testdata(intestdatabase)210groupsincluding60single,45binary105ternary.5-200mg/m380groupsincluding24single,27binary29ternary.5-200mg/m3testmodicateoptimiseGC-FIDdeterminatethesamesamples'concentrationcomparativeanalysisofGC-FLD'sandE-nose'sresults.thebestparametersoftheneuralnetworkwereascertainedandtheircodeswerewrittenintothefinalsoftwaresystem.pridictionofodorintensitytheodorsensorymethodtheodorintensityrelativeconcentrationsweresameasthetestdataeachcompoundtestedwasrespectivelyinjectedintoanolfactory-bag(3Lvolumeandfullofcleanair),whenallthecompoundshadcompletelyevaporated,anodorsamplewaspreparedbytransferringacertainquantityofthegasfromthepreviousolfactory-bagtoanewbagbyaninjector.Then6sni?ngpanelistsevaluatedthetestinggasaccordingtoOIRSselecttherelativepredicationmodelsandconfirmthecontantsthen,predicationmodelswereemployedtopredicttheodorintensityandtheresultswerecomparedwiththesniffedvalues,thentheoptimummodelsweredetermined.RESULTSPART1:fig.2showsthatsuitablesensorsareMC119,MQ6,TGS2610,2M008andWSP2620.sothese5sensorsareselectedtocompriseinasensorarray.wecanfindAllRSDvalueswerelessthan7%,whichshowthattheexperimenthadgoodprecision.PART2

TheresultsshowthattheE-nosesystemcoulddeterminerespectiveconcentrationsofaromatichydrocarbonmixturessimultaneouslyandithadahighaccuracyrelativetoGC-FID.theBPneuralnetworkused'logsig'and'purelin'astransferfunctionsand'trainlm'

asthetrainingfunctionandwascomposedof210groupsoftrainingdata,a5dimensioninputlayeranda3dimensionoutputlayer,6hiddenlayersand20neuronsineverylayer.PART:3

Weber-FecherlawSothesethreemodelswereusedtopredicttheodorintensity.ThetotalAREwas5.31%,thePearsoncorrelationcoe?cientwas0.947andsignificanceofpaired-sampleT-testwas0.175.Discussion(1)ComparedwithpreviousE-noses,thetestingtimeforonetestwaslessthantenminutes,whichhastheadvantageoffastdetermination.(2)TheconcentrationsweremeasuredbyaBPneuralnetworkwhiletheodorintensitywasmeasuredbyamodelprediction.therelativeerrorsofthechemicalconcentrationsandodorintensitywere9.71%and5.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論