版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
半經(jīng)驗方法Semiempiricaltheory密度泛函理論DensityFunctionalTheory(DFT)快速計算方法第一性原理計算ExactSolutionHFMP2CCSD(T)DZTZQZBasisSetExpansionFullCIWaveFunctionExpansionHF
LimitTypicalCalculations
BasisSetAllpossibleconfigurationsNeedtospecifymethodandbasissetwhendescribingacalculationInteractionbetweenbasissetandcorrelationmethodrequirepropertreatmentofbothforaccuratecalculations.dilemmaaccuracycostWhynotusebestavailablecorrelationmethodwiththelargestavailablebasisset?chemicalaccuracyComputationalCostC2H6C4H101天27=128天
等待并行ComputationalCostAMP2calculationwouldbe100xmoreexpensivethanHFcalculationwithsamebasisset.ACCSD(T)calculationwouldbe104xmoreexpensivethanHFcalculationwithsamebasisset.TriplingbasissetsizewouldincreaseMP2calculation243x(35).Increasingthemoleculesize2x(sayethanebutane)wouldincreaseaCCSD(T)calculation128x(27).為什么從頭算方法慢?N粒子基Slaterdeterminant6重積分!NxNmatrix為什么從頭算方法慢?單粒子基GTOSTOGTO1,2-electronintegrals6重積分!為什么從頭算方法慢?Howmanyintegrals?電子數(shù)HFCI(H2O)2dimer億億億為什么從頭算方法慢?太多電子!太多積分!I/Obottleneck硬盤積分數(shù)據(jù)IO解決方案:不直接計算積分,用參數(shù)代替半經(jīng)驗方法Semiempirical不直接解方程密度泛函理論DensityFunctionalSemi-empiricalMOMethods基本思路ThehighcostofabinitioMOcalculationsislargelyduetothemanyintegralsthatneedtobecalculated(esp.twoelectronintegrals).Semi-empiricalMOmethodsstartwiththegeneralformofabinitioHartree-Fockcalculations,butmakenumerousapproximationsforthevariousintegrals.Manyoftheintegralsareapproximatedbyfunctions
withempiricalparametersthatareadjustedtoimprovetheagreementwithexperiment.Semi-empiricalMOMethods基本思路Coreorbitalsarenottreatedbysemi-empiricalmethods,sincetheydonotchangemuchduringchemicalreactionsOnlyaminimalsetofvalenceorbitalsareconsideredoneachatom(e.g.2s,2px,2py,2pzoncarbon)HFlevel沒有電子相關(guān)valence只有價電子STO-V3G最小基組functions擬合實驗Semi-empiricalMOMethods(1918-1997)non-benzenoid
aromaticity
"AMolecularOrbitalTheoryofOrganicChemistry",I,II,III,IV,V,VI,JACS,1952,3345-3350-3353-3354-3356-3363MOPACprogramMolecularOrbitalPACkageHuckelmethodErichHuckelextendedHuckelmethodRoaldHoffmannCNDO/2,INDO,NDDOJohnPopleMINDO,MNDO,AM1,PM3,RM1andSAM1Lysergicaciddiethylamide(LSD)49atomsgeometryoptimization:1974@CDC6600week2006@pc1minnowseconds~10000atomsExtendedHückelMethodH----HamiltonianmatrixCi----Columnvectorofthemolecularorbitalcoefficientsi----OrbitalenergyS----OverlapmatrixH
Ci=i
S
CiH
----Chooseasaconstant(valenceshellIP)H=KS(H+H)/2近似:Wolfsberg-Helmholtzconstant,1.75R.
Hoffmann,J.Chem.Phys.39,1397(1963).ExtendedHückelMethodconformation
cited1151ZeroDifferentialOverlap(ZDO,零級微分重迭)
TwoelectronrepulsionintegralsareoneofthemostexpensivepartsofabinitioMOcalculationsNeglectintegralsiforbitalsarenotthesameApproximateintegralsbyusings
orbitalsonly
CompleteNeglectofDifferentialOverlapCNDO[CNDO/1,CNDO/2]J.A.Pople,D.P.SantryandG.A.Segal,J.Chem.Phys.,1965,43,S129.totalnumberofsuchintegrals[N(N+1)/2][N(N+1)/2+1]/2N4/8N(N+1)/2N2/2全略微分重迭(H2O)220000200cited:478
IntermediateNeglectofDifferentialOverlapINDO間略微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B=C=DnowrarelyusedMINDO,ZINDO,SINDOINDOcited:415
ModifiedIntermediateNeglectofDifferentialOverlapBingham,R.C.,Dewar,M.J.S.andLo,D.H.J.Amer.Chem.Soc.,1975,97,1285.MINDO,MINDO/1,MINDO/2,MINDO/3MINDO/3參數(shù)化MINDO/3參數(shù)化生成焓偶極矩ZINDO/1,ZINDO/s
Zerner's
IntermediateNeglectofDifferentialOverlapMichaelZerner(1940-2000)groundstategeom.excitedstatesUVspectra
Symmetricorthogonalised
INDOSINDO,SINDO/1D.N.NandaandK.Jug,,TheoreticaChimicaActa,57,95,(1980)dorbitalsfor2ndrowelementNeglectofDiatomicDifferentialOverlapNDDO忽略雙原子微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B&C=DThebasisofmostsuccessfulsemiempiricalmethodsMNDOAM1SAM1RM1PM3PM6
ModifiedNeglectofDifferentialOverlapMNDODewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.MNDO/dThiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.+dbasisfunctionsMNDOCThiel,W.,J.Amer.Chem.Soc.,1981,103,1413.+correlationsDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.databaseparameterizationDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.cited:372Thiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.cited:87Thiel,W.,J.Amer.Chem.Soc.,1981,103,1413.cited:68notwelltested.
AustinModel1AM1
SemiempiricalabinitioModel1SAM1Dewar,M.J.S.,Zoebisch,E.G.,Healy,E.F.andStewart,J.J.P.,J.Amer.Chem.Soc.,1985,107,3902.Tetrahedron,1993,23,5003.MNDO+AM1/dPt-oligoolefinsbindingenergy
ParameterizedModelnumber3PM3thesameformalismandequationsastheAM1method,butcorerepulsionfunction:PM3usestwoGaussianfunctionsAM1usesbetweenoneandfourGaussians/elementStewart,J.J.P.J.Comput.Chem.1989,10,209.Stewart,J.J.P.J.Comput.Chem.1989,10,221.Stewart,J.J.P.J.Comput.Chem.1991,12,320.cited:4982
ParameterizedModelnumber3Stewart,J.J.P.J.Mol.Model.2004,10,155.Stewart,J.J.P.J.Mol.Model.2007,13,1173.PM6cited:261geometricaloptimization!BScatStrathclydeUniversity,Glasgow,Scotland,in1969PhDatStrathclydeUniversity,Glasgow,Scotland,in1972DScatStrathclydeUniversity,Glasgow,Scotland,in1995AuthoredthefirstMOPACwhileworkinginProfessorMichaelDewar'sgroup,1983.BeenworkingonMOPACnowfor27years.Authoredover140papers.In1999,wasreportedtobethe15thmost-citedchemistintheworld.WorkedattheFrankJ.SeilerResearchLaboratoryattheAirForceAcademyinColoradoSpringsfrom1984-1991.Becameaconsultant(asoleproprietor)in1991,andworkedasaconsultanttoFujitsuuntil2004.Hasbeenanindependentdevelopersincethen.HasseveralPCs,andworksoutofaroominthebasementofhishouseinColoradoSprings.Hasnostudentsorco-workers,butcommunicatesviatheInternet.Hehastwocats,awife,andasnow-blower,noneofwhichwork.ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermi(1901-1954)(1923-)meson–protonscatteringcalculatednumbersagreedprettywellwithFermi'smeasurednumbers"Therearetwowaysofdoingcalculationsintheoreticalphysics.Oneway,andthisisthewayIprefer,istohaveaclearphysicalpictureoftheprocessthatyouarecalculating.Theotherwayistohaveapreciseandself-consistentmathematicalformalism.Youhaveneither."IndesperationIaskedFermiwhetherhewasnotimpressedbytheagreementbetweenourcalculatednumbersandhismeasurednumbers.Hereplied,“Howmanyarbitraryparametersdidyouuseforyourcalculations?”Ithoughtforamomentaboutourcut-offproceduresandsaid,“Four.”Hesaid,“IremembermyfriendJohnnyvonNeumannusedtosay,withfourparametersIcanfitanelephant,andwithfiveIcanmakehimwigglehistrunk.”ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermiFit-an-elephantFreemanDysonEnricoFermiScienceorTechnique?heavilyparameterizedSemi-empiricalmethodsindependentofexperimentsexperiment-dependenttruth&onlytruthuseful&usable密度泛函理論DensityFunctionalTheoryDFTThewavefunctionitselfisessentiallyuninterpertable.Reduceproblemsize:WavefunctionsforN-electronsystemscontain4Ncoordinates.Wavefunctionbasedmethodsquicklybecomeintractableforlargesystems,evenwithcontinuedimprovementincomputingpower,duetothecoupledmotionoftheelectrons.Adesiretoworkwithsomephysicalobservableratherthanprobabilityamplitude.MotivationElectronicEnergyComponentsTotalelectronicenergycanbepartitioned:E=ET+ENE+EJ+EX+ECET,ENE,&EJarelargestcontributorstoEEX>EC
ET=KineticenergyoftheelectronsENE=CoulombattractionenergybetweenelectronsandnucleiEJ=CoulombrepulsionenergybetweenelectronsEX=Exchangeenergy,acorrectionfortheself-repulsionsofelectronsEC=CorrelationenergybetweenthemotionsofelectronswithdifferentspinsThomas-Fermi-Dirac(TFD)ModelEnergyisafunctionoftheoneelectrondensity,Nuclear-electronattraction&electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergyXModelTFDdoesnotpredictbondingandthetotalenergiesareinerrorby15-50%.IfthevalueinSlater’sExistreatedasparameter,thenbetterresultsareachieved.TheXmodel(aka.Hartree-Fock-Slater)uses=3/4.AlthoughXhasbeensupercededbymodernfunctionals,itisstillusefulforinorganicsystemsandpreliminarycalculations.TheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)1925-2004TheoreticalBasiscanbewrittenasasingleSlaterdeterminantoforbitals,butorbitalsarenotthesameasHartree-FockEXCtakescareofelectroncorrelationaswellasexchangeEnergyisafunctionalofthedensityE[]Thefunctionalisuniversal,independentofthesystemTheexactdensityminimizesE[]Appliesonlytothegroundstate
HohenbergandKohn(1964)KohnandSham(1965)
VariationalequationsforalocalfunctionalTheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthat:molecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”“Formoleculeswitha
nondegenerate
groundstate,theground-state
Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
calculate
probabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.TheHohenberg-kohnvariationaltheorem“Foreverytrialdensityfunctionthatsatisfiesandforall,thefollowinginequalityholds:,isthetrueground–stateenergy.”whereTheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
自由電子氣模型Thus,theground-statewavefunctionofthereferencesystemis:
isaspinfunctionorbitalenergies.areKohn-ShamForconvenience,thezerosubscriptonisomittedhereafter.Defineasfollows:ground-state
electronickineticenergysystemofnoninteractingelectrons.(either)isthedifferenceintheaveragebetweenthemoleculeand
thereference
Thequantityrepulsionenergy.units)
for
theelectrostaticinterelectronicistheclassicalexpression(inatomicRememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,itground-stateenergybyvaryingtominimizethefunctional
canvarytheKSorbitals
minimizetheaboveenergyexpressionsubjecttotheorthonormalityconstraint:TheHohenberg-Kohnvariationaltheoremtellusthatwecanfindthe
soas.Equivalently,insteadofvaryingweThus,theKohn-Shamorbitalsarethosethatwiththeexchange-correlationpotential
definedby(Ifisknown,itsfunctionalderivative
isalsoknown.)CommentsontheDFTmethods:(1)TheKSequationsaresolvedinaself-consistentfashion,liketheHFequations.(2)ThecomputationtimerequiredforaDFTcalculationformallyscalesthe
third
power
ofthenumberofbasisfunctions.(3)ThereisnoDFmolecularwavefunction.(4)TheKSorbitalscanbeusedinqualitativeMOdiscussions,liketheHF
orbitals.TheKSoperatorexchangeoperatorsintheHFoperatorarereplacedbytheeffectsofbothexchangeandelectroncorrelation.isthesameastheHFoperator
exceptthatthe,whichhandles(5)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(6)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
ConstructingDensityFunctionalsExactformisunknown.Hohenberg-Kohnisonlyanexistenceproof.Densityfunctionalshavetheform:ForLSDA:a=b=c=0Forpurefunctionals:a=0Systematicimprovementoffunctionalsispossible,butcomplicatedbythefactthatexactconstraintsandpropertiesofsaidfunctionalsarestillbeingelucidated.IncreasingChemicalAccuracyDecreasingComputationalCostsAccuracyvs.ComputationalCostLSDAGGAMeta-GGAX1951Dirac1930G96B86B88PW91PBE1996RPBE1999revPBE1998xPBE2004PW86mPWTPSS2003BR89PKZB1999Exchange,ExCS1975LSDAGGAMeta-GGAW38xPBE2004PW86PBE1996PW91LYP1988B95TPSS2003PKZB1999B88VWN1980PZ81PW92CAData1980Correlation,EcCalculatingExcTermsExchange-correlationfunctionalsmustbenumericallyintegratednotasrobustasanalyticmethods.Energiesandgradientsare1-3timesthecostofHartree-Fock.Frequenciesare2-4timesthecostofHartree-Fock.Someofthiscomputationalcostcanberecuperatedforpuredensityfunctionalsbyemployingthede
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年海南省三亞市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2023年山西省臨汾市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2024年短視頻內(nèi)容創(chuàng)作與版權(quán)許可合同
- 2024沙場資源綜合利用開發(fā)承包合同3篇
- 2024年餐飲投資合伙合同細則一
- 2024校園活動策劃與實施服務合同
- 2024年金融科技產(chǎn)品定制開發(fā)服務協(xié)議3篇
- 2024年金融機構(gòu)間借款保證合同書2篇
- 2023-2024年中級經(jīng)濟師之中級經(jīng)濟師經(jīng)濟基礎(chǔ)知識試題(附答案)
- 2023-2024年國家電網(wǎng)招聘之經(jīng)濟學類試題及答案二
- 錨索張拉記錄表
- 全國計算機等級考試二級Python復習備考題庫(含答案)
- 《生物安全培訓》課件-2024鮮版
- 部編人教版數(shù)學二年級下冊課前預習單
- 每日食品安全檢查記錄表
- JTG-D40-2011公路水泥混凝土路面設(shè)計規(guī)范
- 2024年4月自考02799獸醫(yī)臨床醫(yī)學試題
- 2024年全國高考體育單招考試語文試卷試題(含答案詳解)
- 市政工程勞動力計劃
- 2023年七年級語文上冊期末測試卷(完美版)
- 2023年七年級地理上冊期末測試卷帶答案
評論
0/150
提交評論