武大理論化學ch7a_第1頁
武大理論化學ch7a_第2頁
武大理論化學ch7a_第3頁
武大理論化學ch7a_第4頁
武大理論化學ch7a_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

半經(jīng)驗方法Semiempiricaltheory密度泛函理論DensityFunctionalTheory(DFT)快速計算方法第一性原理計算ExactSolutionHFMP2CCSD(T)DZTZQZBasisSetExpansionFullCIWaveFunctionExpansionHF

LimitTypicalCalculations

BasisSetAllpossibleconfigurationsNeedtospecifymethodandbasissetwhendescribingacalculationInteractionbetweenbasissetandcorrelationmethodrequirepropertreatmentofbothforaccuratecalculations.dilemmaaccuracycostWhynotusebestavailablecorrelationmethodwiththelargestavailablebasisset?chemicalaccuracyComputationalCostC2H6C4H101天27=128天

等待并行ComputationalCostAMP2calculationwouldbe100xmoreexpensivethanHFcalculationwithsamebasisset.ACCSD(T)calculationwouldbe104xmoreexpensivethanHFcalculationwithsamebasisset.TriplingbasissetsizewouldincreaseMP2calculation243x(35).Increasingthemoleculesize2x(sayethanebutane)wouldincreaseaCCSD(T)calculation128x(27).為什么從頭算方法慢?N粒子基Slaterdeterminant6重積分!NxNmatrix為什么從頭算方法慢?單粒子基GTOSTOGTO1,2-electronintegrals6重積分!為什么從頭算方法慢?Howmanyintegrals?電子數(shù)HFCI(H2O)2dimer億億億為什么從頭算方法慢?太多電子!太多積分!I/Obottleneck硬盤積分數(shù)據(jù)IO解決方案:不直接計算積分,用參數(shù)代替半經(jīng)驗方法Semiempirical不直接解方程密度泛函理論DensityFunctionalSemi-empiricalMOMethods基本思路ThehighcostofabinitioMOcalculationsislargelyduetothemanyintegralsthatneedtobecalculated(esp.twoelectronintegrals).Semi-empiricalMOmethodsstartwiththegeneralformofabinitioHartree-Fockcalculations,butmakenumerousapproximationsforthevariousintegrals.Manyoftheintegralsareapproximatedbyfunctions

withempiricalparametersthatareadjustedtoimprovetheagreementwithexperiment.Semi-empiricalMOMethods基本思路Coreorbitalsarenottreatedbysemi-empiricalmethods,sincetheydonotchangemuchduringchemicalreactionsOnlyaminimalsetofvalenceorbitalsareconsideredoneachatom(e.g.2s,2px,2py,2pzoncarbon)HFlevel沒有電子相關(guān)valence只有價電子STO-V3G最小基組functions擬合實驗Semi-empiricalMOMethods(1918-1997)non-benzenoid

aromaticity

"AMolecularOrbitalTheoryofOrganicChemistry",I,II,III,IV,V,VI,JACS,1952,3345-3350-3353-3354-3356-3363MOPACprogramMolecularOrbitalPACkageHuckelmethodErichHuckelextendedHuckelmethodRoaldHoffmannCNDO/2,INDO,NDDOJohnPopleMINDO,MNDO,AM1,PM3,RM1andSAM1Lysergicaciddiethylamide(LSD)49atomsgeometryoptimization:1974@CDC6600week2006@pc1minnowseconds~10000atomsExtendedHückelMethodH----HamiltonianmatrixCi----Columnvectorofthemolecularorbitalcoefficientsi----OrbitalenergyS----OverlapmatrixH

Ci=i

S

CiH

----Chooseasaconstant(valenceshellIP)H=KS(H+H)/2近似:Wolfsberg-Helmholtzconstant,1.75R.

Hoffmann,J.Chem.Phys.39,1397(1963).ExtendedHückelMethodconformation

cited1151ZeroDifferentialOverlap(ZDO,零級微分重迭)

TwoelectronrepulsionintegralsareoneofthemostexpensivepartsofabinitioMOcalculationsNeglectintegralsiforbitalsarenotthesameApproximateintegralsbyusings

orbitalsonly

CompleteNeglectofDifferentialOverlapCNDO[CNDO/1,CNDO/2]J.A.Pople,D.P.SantryandG.A.Segal,J.Chem.Phys.,1965,43,S129.totalnumberofsuchintegrals[N(N+1)/2][N(N+1)/2+1]/2N4/8N(N+1)/2N2/2全略微分重迭(H2O)220000200cited:478

IntermediateNeglectofDifferentialOverlapINDO間略微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B=C=DnowrarelyusedMINDO,ZINDO,SINDOINDOcited:415

ModifiedIntermediateNeglectofDifferentialOverlapBingham,R.C.,Dewar,M.J.S.andLo,D.H.J.Amer.Chem.Soc.,1975,97,1285.MINDO,MINDO/1,MINDO/2,MINDO/3MINDO/3參數(shù)化MINDO/3參數(shù)化生成焓偶極矩ZINDO/1,ZINDO/s

Zerner's

IntermediateNeglectofDifferentialOverlapMichaelZerner(1940-2000)groundstategeom.excitedstatesUVspectra

Symmetricorthogonalised

INDOSINDO,SINDO/1D.N.NandaandK.Jug,,TheoreticaChimicaActa,57,95,(1980)dorbitalsfor2ndrowelementNeglectofDiatomicDifferentialOverlapNDDO忽略雙原子微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B&C=DThebasisofmostsuccessfulsemiempiricalmethodsMNDOAM1SAM1RM1PM3PM6

ModifiedNeglectofDifferentialOverlapMNDODewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.MNDO/dThiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.+dbasisfunctionsMNDOCThiel,W.,J.Amer.Chem.Soc.,1981,103,1413.+correlationsDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.databaseparameterizationDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.cited:372Thiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.cited:87Thiel,W.,J.Amer.Chem.Soc.,1981,103,1413.cited:68notwelltested.

AustinModel1AM1

SemiempiricalabinitioModel1SAM1Dewar,M.J.S.,Zoebisch,E.G.,Healy,E.F.andStewart,J.J.P.,J.Amer.Chem.Soc.,1985,107,3902.Tetrahedron,1993,23,5003.MNDO+AM1/dPt-oligoolefinsbindingenergy

ParameterizedModelnumber3PM3thesameformalismandequationsastheAM1method,butcorerepulsionfunction:PM3usestwoGaussianfunctionsAM1usesbetweenoneandfourGaussians/elementStewart,J.J.P.J.Comput.Chem.1989,10,209.Stewart,J.J.P.J.Comput.Chem.1989,10,221.Stewart,J.J.P.J.Comput.Chem.1991,12,320.cited:4982

ParameterizedModelnumber3Stewart,J.J.P.J.Mol.Model.2004,10,155.Stewart,J.J.P.J.Mol.Model.2007,13,1173.PM6cited:261geometricaloptimization!BScatStrathclydeUniversity,Glasgow,Scotland,in1969PhDatStrathclydeUniversity,Glasgow,Scotland,in1972DScatStrathclydeUniversity,Glasgow,Scotland,in1995AuthoredthefirstMOPACwhileworkinginProfessorMichaelDewar'sgroup,1983.BeenworkingonMOPACnowfor27years.Authoredover140papers.In1999,wasreportedtobethe15thmost-citedchemistintheworld.WorkedattheFrankJ.SeilerResearchLaboratoryattheAirForceAcademyinColoradoSpringsfrom1984-1991.Becameaconsultant(asoleproprietor)in1991,andworkedasaconsultanttoFujitsuuntil2004.Hasbeenanindependentdevelopersincethen.HasseveralPCs,andworksoutofaroominthebasementofhishouseinColoradoSprings.Hasnostudentsorco-workers,butcommunicatesviatheInternet.Hehastwocats,awife,andasnow-blower,noneofwhichwork.ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermi(1901-1954)(1923-)meson–protonscatteringcalculatednumbersagreedprettywellwithFermi'smeasurednumbers"Therearetwowaysofdoingcalculationsintheoreticalphysics.Oneway,andthisisthewayIprefer,istohaveaclearphysicalpictureoftheprocessthatyouarecalculating.Theotherwayistohaveapreciseandself-consistentmathematicalformalism.Youhaveneither."IndesperationIaskedFermiwhetherhewasnotimpressedbytheagreementbetweenourcalculatednumbersandhismeasurednumbers.Hereplied,“Howmanyarbitraryparametersdidyouuseforyourcalculations?”Ithoughtforamomentaboutourcut-offproceduresandsaid,“Four.”Hesaid,“IremembermyfriendJohnnyvonNeumannusedtosay,withfourparametersIcanfitanelephant,andwithfiveIcanmakehimwigglehistrunk.”ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermiFit-an-elephantFreemanDysonEnricoFermiScienceorTechnique?heavilyparameterizedSemi-empiricalmethodsindependentofexperimentsexperiment-dependenttruth&onlytruthuseful&usable密度泛函理論DensityFunctionalTheoryDFTThewavefunctionitselfisessentiallyuninterpertable.Reduceproblemsize:WavefunctionsforN-electronsystemscontain4Ncoordinates.Wavefunctionbasedmethodsquicklybecomeintractableforlargesystems,evenwithcontinuedimprovementincomputingpower,duetothecoupledmotionoftheelectrons.Adesiretoworkwithsomephysicalobservableratherthanprobabilityamplitude.MotivationElectronicEnergyComponentsTotalelectronicenergycanbepartitioned:E=ET+ENE+EJ+EX+ECET,ENE,&EJarelargestcontributorstoEEX>EC

ET=KineticenergyoftheelectronsENE=CoulombattractionenergybetweenelectronsandnucleiEJ=CoulombrepulsionenergybetweenelectronsEX=Exchangeenergy,acorrectionfortheself-repulsionsofelectronsEC=CorrelationenergybetweenthemotionsofelectronswithdifferentspinsThomas-Fermi-Dirac(TFD)ModelEnergyisafunctionoftheoneelectrondensity,Nuclear-electronattraction&electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergyXModelTFDdoesnotpredictbondingandthetotalenergiesareinerrorby15-50%.IfthevalueinSlater’sExistreatedasparameter,thenbetterresultsareachieved.TheXmodel(aka.Hartree-Fock-Slater)uses=3/4.AlthoughXhasbeensupercededbymodernfunctionals,itisstillusefulforinorganicsystemsandpreliminarycalculations.TheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)1925-2004TheoreticalBasiscanbewrittenasasingleSlaterdeterminantoforbitals,butorbitalsarenotthesameasHartree-FockEXCtakescareofelectroncorrelationaswellasexchangeEnergyisafunctionalofthedensityE[]Thefunctionalisuniversal,independentofthesystemTheexactdensityminimizesE[]Appliesonlytothegroundstate

HohenbergandKohn(1964)KohnandSham(1965)

VariationalequationsforalocalfunctionalTheHohenberg-KohnTheorem

propertiesareuniquelydeterminedbytheground-stateelectron

In1964,HohenbergandKohnprovedthat:molecularenergy,wavefunction

andallothermolecularelectronic

probabilitydensity

namely,Phys.Rev.136,13864(1964)

.”“Formoleculeswitha

nondegenerate

groundstate,theground-state

Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties

fromtheground-stateelectrondensity

calculate

probabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential

differs

fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.TheHohenberg-kohnvariationaltheorem“Foreverytrialdensityfunctionthatsatisfiesandforall,thefollowinginequalityholds:,isthetrueground–stateenergy.”whereTheKohn-Shammethod

Ifweknowtheground-stateelectrondensity

molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave

1965,KohnandShamdevisedapracticalmethodforfinding

andforfinding

from.[Phys.Rev.,140,A1133(1965)].Theirmethod

iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof

theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield

approximateresults.electronsthateachexperiencethesameexternalpotential

theground-stateelectronprobabilitydensity

equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot

interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.

自由電子氣模型Thus,theground-statewavefunctionofthereferencesystemis:

isaspinfunctionorbitalenergies.areKohn-ShamForconvenience,thezerosubscriptonisomittedhereafter.Defineasfollows:ground-state

electronickineticenergysystemofnoninteractingelectrons.(either)isthedifferenceintheaveragebetweenthemoleculeand

thereference

Thequantityrepulsionenergy.units)

for

theelectrostaticinterelectronicistheclassicalexpression(inatomicRememberthatWiththeabovedefinitions,

canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside

are

easytoevaluatefromgetagoodapproximationto

totheground-stateenergy.

Thefourthquantity

accurately.

ThekeytoaccurateKSDFT

calculationofmolecular

propertiesisto

Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate

andtheymakethe

maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,itground-stateenergybyvaryingtominimizethefunctional

canvarytheKSorbitals

minimizetheaboveenergyexpressionsubjecttotheorthonormalityconstraint:TheHohenberg-Kohnvariationaltheoremtellusthatwecanfindthe

soas.Equivalently,insteadofvaryingweThus,theKohn-Shamorbitalsarethosethatwiththeexchange-correlationpotential

definedby(Ifisknown,itsfunctionalderivative

isalsoknown.)CommentsontheDFTmethods:(1)TheKSequationsaresolvedinaself-consistentfashion,liketheHFequations.(2)ThecomputationtimerequiredforaDFTcalculationformallyscalesthe

third

power

ofthenumberofbasisfunctions.(3)ThereisnoDFmolecularwavefunction.(4)TheKSorbitalscanbeusedinqualitativeMOdiscussions,liketheHF

orbitals.TheKSoperatorexchangeoperatorsintheHFoperatorarereplacedbytheeffectsofbothexchangeandelectroncorrelation.isthesameastheHFoperator

exceptthatthe,whichhandles(5)Variousapproximatefunctionals

DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected

exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the

Perdew1986correlationfunctional)

(6)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2

iswrittenasthesumofanexchange-energyfunctional

ConstructingDensityFunctionalsExactformisunknown.Hohenberg-Kohnisonlyanexistenceproof.Densityfunctionalshavetheform:ForLSDA:a=b=c=0Forpurefunctionals:a=0Systematicimprovementoffunctionalsispossible,butcomplicatedbythefactthatexactconstraintsandpropertiesofsaidfunctionalsarestillbeingelucidated.IncreasingChemicalAccuracyDecreasingComputationalCostsAccuracyvs.ComputationalCostLSDAGGAMeta-GGAX1951Dirac1930G96B86B88PW91PBE1996RPBE1999revPBE1998xPBE2004PW86mPWTPSS2003BR89PKZB1999Exchange,ExCS1975LSDAGGAMeta-GGAW38xPBE2004PW86PBE1996PW91LYP1988B95TPSS2003PKZB1999B88VWN1980PZ81PW92CAData1980Correlation,EcCalculatingExcTermsExchange-correlationfunctionalsmustbenumericallyintegratednotasrobustasanalyticmethods.Energiesandgradientsare1-3timesthecostofHartree-Fock.Frequenciesare2-4timesthecostofHartree-Fock.Someofthiscomputationalcostcanberecuperatedforpuredensityfunctionalsbyemployingthede

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論