2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年寧夏民族職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.2.已知單位向量a,b的夾角為,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B3.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B4.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為_(kāi)_____.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.5.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.6.①附中高一年級(jí)聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個(gè)集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級(jí)聰明的學(xué)生,不是確定的,原因是沒(méi)法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒(méi)說(shuō)明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.7.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.8.已知D、E、F分別是△ABC的邊BC、CA、AB的中點(diǎn),且,則下列命題中正確命題的個(gè)數(shù)為(

①;

③;

A.1

B.2

C.3

D.4

答案:C9.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;

11.10.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對(duì)于A,f(x)=x(x≥0),不符合;對(duì)于B,f(x)=x(x≠0),不符合;對(duì)于C,f(x)=|x|(x∈R),不符合;對(duì)于D,f(x)=x(x∈R),符合;故選D.11.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制12.設(shè)O、A、B、C為平面上四個(gè)點(diǎn),(

A.2

B.2

C.3

D.3答案:C13.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因?yàn)椤螦CB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)14.把38化為二進(jìn)制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗(yàn)證所給的四個(gè)選項(xiàng),在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過(guò)驗(yàn)證知道,B中的二進(jìn)制表示的數(shù)字換成十進(jìn)制以后得到38,故選B.15.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D16.用反證法證明“3是無(wú)理數(shù)”時(shí),第一步應(yīng)假設(shè)“______.”答案:反證法肯定題設(shè)而否定結(jié)論,從而得出矛盾,題設(shè)“3是無(wú)理數(shù)”,那么假設(shè)為:3是有理數(shù).故為3是有理數(shù).17.四支足球隊(duì)爭(zhēng)奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C18.讀下面的程序:

上面的程序在執(zhí)行時(shí)如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B19.已知P:2+2=5,Q:3>2,則下列判斷錯(cuò)誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯(cuò)誤.故選C.20.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.21.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C22.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn),過(guò)F2作橢圓的弦AB,若△AF1B的周長(zhǎng)為16,橢圓的離心率為e=32,則橢圓的方程為_(kāi)_____.答案:根據(jù)橢圓的定義,△AF1B的周長(zhǎng)為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=123.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).24.已知?jiǎng)狱c(diǎn)P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動(dòng)點(diǎn)P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)(-2,0),(2,0)的距離之差等于2,由雙曲線定義知?jiǎng)狱c(diǎn)P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).25.如圖,從圓O外一點(diǎn)P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為_(kāi)_____.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:226.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:227.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B28.已知直線過(guò)點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C29.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說(shuō)事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C30.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C31.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以AC=12a+b,又E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,所以M為AC的中點(diǎn),所以AM=12AC,所以AM=14a+12b.故為:14a+12b.32.從一堆蘋(píng)果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.33.若根據(jù)10名兒童的年齡

x(歲)和體重

y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報(bào)體重的回歸方程是

y=2x+7,已知這10名兒童的年齡分別是

2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C34.Rt△ABC的直角邊AB在平面α內(nèi),頂點(diǎn)C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B35.在對(duì)吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說(shuō)法正確的是()

A.若隨機(jī)變量K2的觀測(cè)值k>6.635,我們有99%的把握說(shuō)明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機(jī)變量求出有99%的把握說(shuō)吸煙與患肺病有關(guān),則在100個(gè)吸煙者中必有99個(gè)人患有肺病

C.若由隨機(jī)變量求出有95%的把握說(shuō)吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯(cuò)誤

D.以上說(shuō)法均不正確答案:D36.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個(gè)等于0答案:D37.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。38.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,O)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說(shuō)法正確的是()A.C可能是線段AB的中點(diǎn)B.D可能是線段AB的中點(diǎn)C.C,D可能同時(shí)在線段AB上D.C,D不可能同時(shí)在線段AB的延長(zhǎng)線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點(diǎn),則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯(cuò)誤;同理B錯(cuò)誤;若C,D同時(shí)在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時(shí)C和D點(diǎn)重合,與條件矛盾,故C錯(cuò)誤.故選D39.直線l過(guò)點(diǎn)(-3,1),且它的一個(gè)方向向量n=(2,-3),則直線l的方程為_(kāi)_____.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得n=(2,-3)與a=(1,k)互相平行∴12=k-3?k=-32所以直線l的點(diǎn)斜式方程為:y-1=-32(x+3)化成一般式:3x+2y+7=0故為:3x+2y+7=040.若向量?jī)蓛伤傻慕窍嗟?,且,則等于()

A.2

B.5

C.2或5

D.或答案:C41.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:442.由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長(zhǎng)x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a243.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無(wú)軌跡答案:C44.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);

③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).

上述命題中,正確命題的個(gè)數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個(gè)為零,另一個(gè)非零,從而可知有且僅有4個(gè)點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個(gè)交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.45.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:346.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()

A.

B.

C.

D.

答案:A47.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無(wú)法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.48.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C49.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若PB=1,PD=3,則BCAD的值為_(kāi)_____.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.50.

在△ABC中,點(diǎn)D在線段BC的延長(zhǎng)線上,且BC=3CD,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D第2卷一.綜合題(共50題)1.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,27),

(1)求函數(shù)f(x)的解析式;

(2)求f(5);

(3)函數(shù)f(x)有最值嗎?若有,試求出;若無(wú),說(shuō)明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因?yàn)楹瘮?shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域?yàn)镹+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無(wú)最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無(wú),說(shuō)明原因.2.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A3.利用斜二測(cè)畫(huà)法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A4.在極坐標(biāo)系中,過(guò)點(diǎn)(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(guò)(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=25.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長(zhǎng).答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽R(shí)t△CAB.∴AC2=1445由勾股定理得BC=655.6.已知三個(gè)向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實(shí)數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實(shí)數(shù),,使p=λq+μr,故向量p、q、r共面.7.已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過(guò)來(lái)則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.8.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則AB的中點(diǎn)坐標(biāo)為()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D9.平面上一動(dòng)點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線的一支2a=2c時(shí),軌跡為一條射線2a>2c時(shí),無(wú)軌跡.10.關(guān)于斜二測(cè)畫(huà)法畫(huà)直觀圖說(shuō)法不正確的是()

A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同

B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸

C.平行于坐標(biāo)軸的線段長(zhǎng)度在直觀圖中仍然保持不變

D.斜二測(cè)坐標(biāo)系取的角可能是135°答案:C11.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(zhǎng)F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A12.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長(zhǎng)度相等的向量是相等向量;⑥平行于同一個(gè)向量的兩個(gè)向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯(cuò);②不相等的向量也可能不平行;故錯(cuò);③相等向量一定共線;正確;④共線向量不一定相等;故錯(cuò);⑤長(zhǎng)度相等的向量方向相反時(shí)不是相等向量;故錯(cuò);⑥平行于零向量的兩個(gè)向量是不一定是共線向量,故錯(cuò).其中正確的命題是③.故為:③.13.設(shè)F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()

A.2

B.2

C.4

D.8答案:A14.有五條線段長(zhǎng)度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個(gè)三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.15.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D16.若直線過(guò)點(diǎn)(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C17.命題“當(dāng)AB=AC時(shí),△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題有______個(gè).答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時(shí),AB=AC”為假命題.否命題“當(dāng)AB≠AC時(shí),△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時(shí),AB≠AC”為真命題.故為:2.18.求證:答案:證明見(jiàn)解析解析:證明:此題采用了從第三項(xiàng)開(kāi)始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開(kāi)始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。19.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:20.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過(guò)計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是()

A.有99%的人認(rèn)為該欄目?jī)?yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒(méi)有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D21.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.22.擲一顆均勻的骰子,若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對(duì)立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點(diǎn)、出現(xiàn)偶數(shù)點(diǎn).若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對(duì)立事件B表示:“出現(xiàn)偶數(shù)點(diǎn)”,故為出現(xiàn)偶數(shù)點(diǎn).23.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()

A.

B.

C.

D.答案:A24.{,,}是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,}②{,,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C25.如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為與,圓的弦交圓于點(diǎn)(不在上),求證:為定值。

答案:見(jiàn)解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得26.拋物線y=4x2的焦點(diǎn)坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點(diǎn)坐標(biāo)為(0,116)故為(0,116)27.設(shè)P是邊長(zhǎng)為23的正△ABC內(nèi)的一點(diǎn),x,y,z是P到三角形三邊的距離,則x+y+z的最大值為_(kāi)_____.答案:正三角形的邊長(zhǎng)為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點(diǎn)∴點(diǎn)P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當(dāng)且僅當(dāng)x=y=z=1時(shí),x+y+z的最大值為3故為:328.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.29.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制30.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為

______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).31.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過(guò)雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為332.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.33.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B34.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()

A.

B.

C.

D.

答案:A35.已知雙曲線x2-y23=1,過(guò)P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為_(kāi)_____.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:636.(1+x2)5的展開(kāi)式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.37.下列命題中為真命題的是(

A.平行直線的傾斜角相等

B.平行直線的斜率相等

C.互相垂直的兩直線的傾斜角互補(bǔ)

D.互相垂直的兩直線的斜率互為相反數(shù)答案:A38.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:839.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長(zhǎng)之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:940.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點(diǎn)到直線的距離公式,得+d=|1+1|5=255.故為255.41.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.42.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對(duì)答案:因?yàn)椤啊鰽BC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.43.已知|x|<ch,|y|>c>0.求證:|xy|<h.答案:證明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.44.設(shè)d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應(yīng)該是共線的故選C.45.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8346.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()

A.25個(gè)

B.36個(gè)

C.100個(gè)

D.225個(gè)答案:D47.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長(zhǎng)為()

A.

B.3

C.2

D.2答案:A48.用冒泡法對(duì)43,34,22,23,54從小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A49.下列函數(shù)圖象中,正確的是()

A.

B.

C.

D.

答案:C50.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A第3卷一.綜合題(共50題)1.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫(huà)出執(zhí)行該問(wèn)題的程序框圖;

(2)以下是解決該問(wèn)題的一個(gè)程序,但有幾處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.2.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),∴a12=12,?a=14.故選D.3.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:10204.下列命題:

①用相關(guān)系數(shù)r來(lái)刻畫(huà)回歸的效果時(shí),r的值越大,說(shuō)明模型擬合的效果越好;

②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;

其中正確命題的序號(hào)是

______.(寫(xiě)出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說(shuō)明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③5.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B6.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8

g的概率是0.3,質(zhì)量不小于4.85

g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B7.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b8.有四條線段,其長(zhǎng)度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構(gòu)成三角形的概率是______.答案:所有的取法共有C34=4種,三條線段構(gòu)成三角形的條件是任意兩邊之和大于第三邊,其中能夠成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3種,故這三條線段為邊可以構(gòu)成三角形的概率是34,故為34.9.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過(guò)點(diǎn)F作FM∥AC、FN∥AB,分別交AB、AC于點(diǎn)M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A10.已知圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺(tái)的體積.答案:∵圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺(tái)的體積V=13×3×(4π+4π?25π+25π)=39πcm3.11.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()12.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立13.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C14.對(duì)某種花卉的開(kāi)放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為_(kāi)_____天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1615.對(duì)于平面幾何中的命題:“夾在兩條平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),我們常用由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線這間的平行線段相等”,我們可以推斷在立體幾何中:“夾在兩個(gè)平行平面間的平行線段相等”這個(gè)命題是一個(gè)真命題.故為:“夾在兩個(gè)平行平面間的平行線段相等”.16.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0

B=φA(2)當(dāng)a=-1時(shí)△=0

B={0}A(3)當(dāng)a>-1時(shí)△>0

要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=117.直線y=3x+3的傾斜角的大小為_(kāi)_____.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.18.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時(shí),f(x)=1x≥13,解得x∈?;x≥0時(shí),f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.19.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無(wú)法確定

答案:B20.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B21.過(guò)點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長(zhǎng).答案:直線的參數(shù)方程為

x

=

-3

+

32sy

=

12s

(s

為參數(shù)),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數(shù)方程代入上式,得

s2-63s+

10

=

0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.22.編號(hào)為A、B、C、D、E的五個(gè)小球放在如圖所示的五個(gè)盒子中,要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào),B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號(hào),則A可以放在3、4、5號(hào)盒子,分2種情況討論:①當(dāng)A在4、5號(hào)盒子時(shí),B有1種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有2×1×6=12種情況;②當(dāng)A在3號(hào)盒子時(shí),B有3種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有1×3×6=18種情況;由加法原理,計(jì)算可得共有12+18=30種不同情況;故選C.23.已知P是以F1,F(xiàn)2為焦點(diǎn)的橢圓(a>b>0)上的一點(diǎn),若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()

A.

B.

C.

D.答案:D24.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過(guò)定點(diǎn);

(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;

(3)若直線不經(jīng)過(guò)第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過(guò)定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過(guò)定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線不經(jīng)過(guò)第四象限.故k的取值范圍為[0,+∞).25.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,N為拋物線上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.26.(理科)若隨機(jī)變量ξ~N(2,22),則D(14ξ)的值為_(kāi)_____.答案:解;∵隨機(jī)變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機(jī)變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.27.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B28.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13529.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C30.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.31.設(shè)集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關(guān)系為_(kāi)_____.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.32.下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(

)答案:A33.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬(wàn)元)的幾組統(tǒng)計(jì)數(shù)據(jù):

x23456y2.23.85.56.57.0(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

y=

bx+

a;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?

(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),寫(xiě)出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論