版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年寧夏職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C2.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對應(yīng)的點的實部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.3.若關(guān)于x的方程3x2-5x+a=0的一個根在(-2,0)內(nèi),另一個根在(1,3)內(nèi),求a的取值范圍。答案:解:設(shè)f(x)=3x2-5x+a,則f(x)為開口向上的拋物線,如右圖所示,∵f(x)=0的兩根分別在區(qū)間(-2,0),(1,3)內(nèi),∴,即,解得-12<a<0,故所求a的取值范圍是{a|-12<a<0}。4.已知A(1,2),B(-3,b)兩點的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-25.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.6.設(shè)雙曲線(a>0,b>0)的右頂點為A,P為雙曲線上的一個動點(不是頂點),從點A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點,其中O為坐標(biāo)原點,則|OP|2與|OQ|?|OR|的大小關(guān)系為()
A.|OP|2<|OQ|?|OR|
B.|OP|2>|OQ|?|OR|
C.|OP|2=|OQ|?|OR|
D.不確定答案:C7.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運用能力,對解決實際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.8.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:19.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.10.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)
(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.11.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C12.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()
A.
B.
C.±
D.±答案:C13.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點O、半徑是a2+b2的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為F(2,0),其短軸的一個端點到點F的距離為3.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準(zhǔn)圓”的方程為x2+y2=4;(2)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設(shè)過點P且與橢圓相切的直線l的方程為my=x-2,聯(lián)立my=x-2x23+y2=1,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).設(shè)點B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)14.如圖是《集合》一章的知識結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運算”的下位
答案:D15.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.16.設(shè)隨機變量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)17.已知隨機變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.18.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:
①當(dāng)點A在圓C上時,直線l與圓C相切;
②當(dāng)點A在圓C內(nèi)時,直線l與圓C相離;
③當(dāng)點A在圓C外時,直線l與圓C相交.
其中正確的命題個數(shù)是()
A.0
B.1
C.2
D.3答案:D19.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?
(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=220.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.21.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個能被3整除”時,假設(shè)應(yīng)為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a(chǎn)不能被3整除答案:B22.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.23.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A24.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.25.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是
()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.26.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.27.在極坐標(biāo)系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=228.設(shè)
是不共線的向量,(k,m∈R),則A、B、C三點共線的充要條件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D29.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()
A.a(chǎn)b
B.ab
C.a(chǎn)b
D.2ab答案:B30.設(shè)a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D31.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A32.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2533.在等腰直角三角形ABC中,若M是斜邊AB上的點,則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當(dāng)點M位于線段AC內(nèi)時,AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.34.頂點在原點,焦點是(0,5)的拋物線方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A35.某自動化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B36.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.37.當(dāng)a≠0時,y=ax+b和y=bax的圖象只可能是()
A.
B.
C.
D.
答案:A38.把38化為二進制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過驗證知道,B中的二進制表示的數(shù)字換成十進制以后得到38,故選B.39.某種細菌在培養(yǎng)過程中,每20分鐘分裂一次(一個分裂為兩個).經(jīng)過3個小時,這種細菌由1個可繁殖成()
A.511個
B.512個
C.1023個
D.1024個答案:B40.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()
A.5
B.或
C.或
D.答案:C41.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)42.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.43.在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點N是BC中點,則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點G是MN中點,則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).44.中心在原點,一個焦點坐標(biāo)為(0,5),短軸長為4的橢圓方程為______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點在y軸上,設(shè)為y2a2+x2b2=1∵橢圓的焦點坐標(biāo)為(0,5),短軸長為4,∴c=5,b=2∵a2=b2+c2,∴橢圓的長半軸長為a=4+25=29∴此橢圓的標(biāo)準(zhǔn)方程為y229+x24=1故為y229+x24=145.與
向量
=(2,-1,2)共線且滿足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D46.一個箱子中裝有質(zhì)量均勻的10個白球和9個黑球,一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個白球中取5個白球有C105種9個黑球中取5個黑球有C95種∴一次摸出5個球,它們的顏色相同的有C105+C95種∴一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2347.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時,兩條直線垂直;當(dāng)a=-1時,兩條直線重合故為:148.經(jīng)過點P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C49.過點(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A50.設(shè)空間兩個不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°第2卷一.綜合題(共50題)1.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),則k的取值范圍是
______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當(dāng)k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標(biāo)為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<122.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時,對應(yīng)的斜率k=tan30°=33故選:C.3.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C4.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C5.
已知向量
=(4,3),=(1,2),若向量
+k
與
-
垂直,則k的值為(
)A.
233B.7C.-
115D.-
233答案:考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系.6.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D7.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.8.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a9.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時,等號成立.10.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標(biāo)是(0,0,149)故為:(0,0,149)11.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應(yīng)的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應(yīng)的元素是4,集合A中還有兩個元素2和3,2可以和4對應(yīng),也可以和5對應(yīng),3可以和4對應(yīng),也可以和5對應(yīng),每個元素有兩種不同的對應(yīng),∴共有2×2=4種結(jié)果,故選B.12.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點都在直線2x+3y+1=0上,由于兩點確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.13.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C14.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C15.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D16.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:317.不等式log32x-log3x2-3>0的解集為()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D18.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個元素,那么實數(shù)m的取值范圍是
______.答案:如果P∩Q有且只有一個元素,即函數(shù)y=m與y=ax+1(a>0,且a≠1)圖象只有一個公共點.∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)19.如圖中的陰影部分用集合表示為______.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)20.如果一個水平放置的圖形的斜二測直觀圖是一個底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()
A.2+
B.
C.
D.1+答案:A21.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.22.某學(xué)校準(zhǔn)備調(diào)查高三年級學(xué)生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機對24名同學(xué)進行調(diào)查;第二種由教務(wù)處對年級的240名學(xué)生編號,由001到240,請學(xué)號最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學(xué)生會的同學(xué)隨機對24名同學(xué)進行調(diào)查,是簡單隨機抽樣,對年級的240名學(xué)生編號,由001到240,請學(xué)號最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D23.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.24.在數(shù)列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)計算a2,a3,a4
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個猜想.①當(dāng)n=1時,a1=1,命題成立.②假設(shè)n=k時命題成立,即ak=2k+1當(dāng)n=k+1時ak+1=2a
k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.25.已知P為拋物線y2=4x上一點,設(shè)P到準(zhǔn)線的距離為d1,P到點A(1,4)的距離為d2,則d1+d2的最小值為______.答案:∵y2=4x,焦點坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進而可知當(dāng)A,P,F(xiàn)三點共線時,d1+d2的最小值=|AF|=4故為426.為了了解某地母親身高x與女兒身高y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身高x(cm)159160160163159154159158159157女兒身高y(cm)158159160161161155162157162156計算x與y的相關(guān)系數(shù)r=0.71,通過查表得r的臨界值r0.05=______,從而有______的把握認為x與y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y=35.2+0.78x,當(dāng)母親身高每增加1cm時,女兒身高______,當(dāng)母親的身高為161cm時,估計女兒的身高為______cm.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=35.2+0.78x,因此,當(dāng)母親身高每增加1cm時,女兒身高0.78,當(dāng)x=161cm時,y=35.2+0.78x=35.2+0.78×161≈161cm故為:0.632,95%,0.78,161cm.27.經(jīng)過點P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C28.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C29.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.30.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.31.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).32.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).33.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標(biāo)為(3,2),試求點P的坐標(biāo);
(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14
,即P點的坐標(biāo)為(343,14).
(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-334.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C35.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND36.在△ABC中,已知D是AB邊上一點,若AD=2DB,CD=λCA+μCB,則λμ的值為______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為1237.(本題滿分12分)已知對任意的平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)角,得到向量,叫做把點B繞點A逆時針方向旋轉(zhuǎn)角得到點P
①已知平面內(nèi)的點A(1,2),B,把點B繞點A沿逆時針方向旋轉(zhuǎn)后得到點P,求點P的坐標(biāo)
②設(shè)平面內(nèi)曲線C上的每一點繞逆時針方向旋轉(zhuǎn)后得到的點的軌跡是曲線,求原來曲線C的方程.答案:解:
……2分
……6分
解得x="0,y="-1
……7分②
…………10分
即…………11分又x’2-y’2="1
"……12分
……13分
化簡得:
……14分解析:略38.關(guān)于x的方程x2+4x+k=0有一個根為-2+3i(i為虛數(shù)單位),則實數(shù)k=______.答案:由韋達定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1339.若=(2,0),那么=(
)
A.(1,2)
B.3
C.2
D.1答案:C40.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B41.已知隨機變量X滿足D(X)=2,則D(3X+2)=()
A.2
B.8
C.18
D.20答案:C42.已知兩點A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A43.圓錐曲線G的一個焦點是F,與之對應(yīng)的準(zhǔn)線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點F的弦為AB,過A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時r<d,圓M與準(zhǔn)線相離;拋物線的離心率
e=1,此時r=d,圓M與準(zhǔn)線相切;雙曲線的離心率
e>1,此時r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.44.選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點F坐標(biāo)為(-1,0).l是經(jīng)過點(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設(shè)點A,B在直線參數(shù)方程中對應(yīng)的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當(dāng)sinα=0時,|FA|?|FB|取最大值3;當(dāng)sinα=±1時,|FA|?|FB|取最小值94.…(10分)45.求證:定義在實數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個交點…(2分)設(shè)交點的橫坐標(biāo)分別為x1,x2,且x1<x2.因為函數(shù)y=f(x)在實數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)46.若A,B,C是直線存在實數(shù)x使得,實數(shù)x為()
A.-1
B.0
C.
D.答案:A47.語句|x|≤3或|x|>5的否定是()
A.|x|≥3或|x|<5
B.|x|>3或|x|≤5
C.|x|≥3且|x|<5
D.|x|>3且|x|≤5答案:D48.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2349.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x50.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.第3卷一.綜合題(共50題)1.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.2.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).3.各項都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤
2n-1.1當(dāng)n=1時,左邊=1,右邊=1,所以命題成立.當(dāng)n=2時,左邊<右邊,所以命題成立②假設(shè)n=k時命題成立,即1+13+…+12k-1≤2k-1,當(dāng)n=k+1時,左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.4.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.5.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負相關(guān)
D.變量x
與y
負相關(guān),u
與v
負相關(guān)答案:B6.把方程化為以參數(shù)的參數(shù)方程是(
)A.B.C.D.答案:D解析:,取非零實數(shù),而A,B,C中的的范圍有各自的限制7.設(shè)一次試驗成功的概率為p,進行100次獨立重復(fù)試驗,當(dāng)p=______時,成功次數(shù)的標(biāo)準(zhǔn)差的值最大,其最大值為______.答案:由獨立重復(fù)試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;58.已知平面向量a=(0,1),b=(x,y),若a⊥b,則實數(shù)y=______.答案:由題意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故為09.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則當(dāng)x=1時,y=4;當(dāng)x=2時,y=7;當(dāng)x=3時,y=10;當(dāng)x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,510.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.11.有5組(x,y)的統(tǒng)計數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C12.有這樣一段“三段論”推理,對于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點;小前提:因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點.以上推理中錯誤的原因是______錯誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點”,不是真命題,因為對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時和當(dāng)x<x0時的導(dǎo)函數(shù)值異號時,那么x=x0是函數(shù)f(x)的極值點,∴大前提錯誤,故為:大前提.13.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D14.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)15.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因為向量b與a=(2,-1,2)共線,所以設(shè)b=ma,因為且a?b=-18,所以ma2=-18,因為|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).16.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.17.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)18.算法框圖中表示判斷的是()A.
B.
C.
D.
答案:∵在算法框圖中,表示判斷的是菱形,故選B.19.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()
A.甲科總體的標(biāo)準(zhǔn)差最小
B.丙科總體的平均數(shù)最小
C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中
D.甲、乙、丙的總體的平均數(shù)不相同
答案:A20.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時x2-2x=-1∴f(3)=-1故為:-121.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長的三角形是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定答案:B22.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.23.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.24.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C25.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠地點離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.26.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當(dāng)a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設(shè)兩個交點的橫坐標(biāo)分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當(dāng)x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)27.棱長為1的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點,則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D28.若圓x2+y2=9上每個點的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C29.利用“直接插入排序法”給按從大到小的順序排序,
當(dāng)插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(
)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;30.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:1031.已知x與y之間的一組數(shù)據(jù):
x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)32.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)
=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.33.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D34.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點,當(dāng)P在BC上由B向C運動時,點R在CD上固定不變,設(shè)BP=x,EF=y,那么下列結(jié)論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點R在C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會計事務(wù)所實習(xí)日記
- 會計人員培訓(xùn)心得體會
- 幼兒教育的教學(xué)隨筆匯編12篇
- 關(guān)于銷售類生產(chǎn)實習(xí)報告4篇
- 鄉(xiāng)鎮(zhèn)雪亮工程公共視頻應(yīng)用聯(lián)網(wǎng)項目綜合視頻監(jiān)控系統(tǒng)功能介紹
- 法律的作用(醉駕版)
- 2025年運載火箭控制系統(tǒng)仿真實時處理系統(tǒng)項目發(fā)展計劃
- 《職場溝通》電子教案 項目六 職場面試溝通
- 商鋪出租合同模板
- 杭州市房屋租賃合同
- 【9歷期末】安徽省合肥市包河區(qū)智育聯(lián)盟2023-2024學(xué)年九年級上學(xué)期1月期末歷史試題
- 2024年短劇拍攝及制作協(xié)議版
- 2024年度專業(yè)外語培訓(xùn)機構(gòu)兼職外教聘任合同3篇
- 汽車維修安全生產(chǎn)管理制度(3篇)
- 個人的車位租賃合同范文-個人車位租賃合同簡單版
- 2025-2025學(xué)年小學(xué)數(shù)學(xué)教研組工作計劃
- 水族館改造合同
- 用電安全專項檢查工作方案模版(3篇)
- 創(chuàng)新思維訓(xùn)練學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 大學(xué)生朋輩心理輔導(dǎo)智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 中國馬克思主義與當(dāng)代2021版教材課后思考題
評論
0/150
提交評論