版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年廣東文理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若隨機變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D2.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.3.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.4.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.5.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個人中選出2個人當代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.6.直線l1過點P(0,-1),且傾斜角為α=30°.
(I)求直線l1的參數(shù)方程;
(II)若直線l1和直線l2:x+y-2=0交于點Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))
(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)7.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當a=0b=0時,違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.8.若點M,A,B,C對空間任意一點O都滿足則這四個點()
A.不共線
B.不共面
C.共線
D.共面答案:D9.下列說法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺
C.圓柱、圓錐、圓臺的底面都是圓
D.圓錐側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C10.設某種動物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個10歲的這種動物,它能活到15歲的概率是______.答案:設活過10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個10歲的這種動物,它能活到15歲的概率是23故為:23.11.若下列算法的程序運行的結(jié)果為S=132,那么判斷框中應填入的關(guān)于k的判斷條件是
______.答案:本題考查根據(jù)程序框圖的運算,寫出控制條件按照程序框圖執(zhí)行如下:s=1
k=12s=12
k=11s=12×11=132
k=10因為輸出132故此時判斷條件應為:K≤10或K<11故為:K≤10或K<1112.正方體的內(nèi)切球和外接球的半徑之比為
A.:1
B.:2
C.2:
D.:3答案:D13.設向量與的夾角為θ,,,則cosθ等于()
A.
B.
C.
D.答案:D14.下列關(guān)于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因為算法具有有窮性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.15.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.16.設m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D17.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.18.如圖所示,已知A、B、C三點不共線,O為平面ABC外的一點,若點M滿足
(1)判斷三個向量是否共面;
(2)判斷點M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個向量的基線又有公共點M,∴M、A、B、C共面,即點M在平面ABC內(nèi),19.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.20.若橢圓x225+y216=1上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為421.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.22.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.23.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個B.2個C.4個D.8個答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個,故選C.24.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當x=1時,g[f(1)]=g[2]=2不滿足方程;當x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}25.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()
A.4
B.12
C.-6
D.3答案:A26.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()
A.
B.
C.
D.2答案:C27.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設p(x0,y0)設AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過點(x0+2,-y0)28.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C29.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.30.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應填12431.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.32.已知空間四點A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[
]A
.4
B.1
C.10
D.11答案:D33.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;
(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;
(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.34.已知拋物線C:y2=4x的焦點為F,點A在拋物線C上運動.
(1)當點A,P滿足AP=-2FA,求動點P的軌跡方程;
(2)設M(m,0),其中m為常數(shù),m∈R+,點A到M的距離記為d,求d的最小值.答案:(1)設動點P的坐標為(x,y),點A的坐標為(xA,yA),則AP=(x-xA,y-yA),因為F的坐標為(1,0),所以FA=(xA-1,yA),因為AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.35.
圓ρ=(cosθ+sinθ)的圓心的極坐標是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A36.如圖,正方體ABCD-A1B1C1D1的棱長為1.
(1)求A1C與DB所成角的大?。?/p>
(2)求二面角D-A1B-C的余弦值;
(3)若點E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設n=(0,0,1)是平面ABCD的一個法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.37.點P(1,3,5)關(guān)于平面xoz對稱的點是Q,則向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B38.設a,b,λ都為正數(shù),且a≠b,對于函數(shù)y=x2(x>0)圖象上兩點A(a,a2),B(b,b2).
(1)若AC=λCB,則點C的坐標是______;
(2)過點C作x軸的垂線,交函數(shù)y=x2(x>0)的圖象于D點,由點C在點D的上方可得不等式:______.答案:(1)設點C(x,y),因為點A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因為點C在點D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)239.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③40.雙曲線C的焦點在x軸上,離心率e=2,且經(jīng)過點P(2,3),則雙曲線C的標準方程是______.答案:設雙曲線C的標準方程x2a2-y2b2=1,∵經(jīng)過點P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標準方程是x2-y23=1,故為:x2-y23=1.41.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個球
B.兩個長方體
C.兩個圓柱
D.兩個圓錐答案:A42.直線kx-y+1=3k,當k變動時,所有直線都通過定點[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A43.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標準方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標準方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.44.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B45.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(
)
A.7
B.
C.4
D.12答案:B46.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝?shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝?shù)x,使得x<2.47.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點可以構(gòu)成直角三角形B.A,B,C三點可以構(gòu)成銳角三角形C.A,B,C三點可以構(gòu)成鈍角三角形D.A,B,C三點不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點可以構(gòu)成直角三角形,故選A.48.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當要證明的不等式形式上比較復雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學推理中常用的思維方法,特別是這兩種方法的綜合運用能力,對解決實際問題有重要的作用.這兩種數(shù)學方法是高考考查的重要數(shù)學思維方法.49.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應在橢圓上或其內(nèi)部,即a>1,所以實數(shù)a的取值范圍是[1,7).故為[1,7).50.設集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.第2卷一.綜合題(共50題)1.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.2.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負相關(guān)
C.變量x與y負相關(guān),u與v正相關(guān)
D.變量x與y負相關(guān),u與v負相關(guān)答案:C3.(1)把二進制數(shù)化為十進制數(shù);(2)把化為二進制數(shù).答案:(1)45,(2)解析:(1)先把二進制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結(jié)果;(2)根據(jù)二進制數(shù)“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..4.三個數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C5.曲線(θ為參數(shù))上的點到兩坐標軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D6.已知復數(shù)z=2+i,則z2對應的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復數(shù)z2的實部等于3,虛部等于4.所以z2對應的點在第Ⅰ象限.故選A.7.某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當n=k+1時該命題也成立.現(xiàn)已知當n=5時,該命題不成立,那么可推得()
A.當n=6時,該命題不成立
B.當n=6時,該命題成立
C.當n=4時,該命題不成立
D.當n=4時,該命題成立答案:C8.復數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.9.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()
A.①③
B.①②
C.③④
D.①④答案:B10.甲、乙、丙、丁四位同學各自對A、B兩個變量的線性相關(guān)性作試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學的實驗結(jié)果體現(xiàn)A、B兩個變量更強的線性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C11.引入復數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A12.如果雙曲線的焦距為6,兩條準線間的距離為4,那么該雙曲線的離心率為()
A.
B.
C.
D.2答案:C13.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:114.利用斜二測畫法能得到的()
①三角形的直觀圖是三角形;
②平行四邊形的直觀圖是平行四邊形;
③正方形的直觀圖是正方形;
④菱形的直觀圖是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A15.設向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B16.在平面直角坐標系內(nèi)第二象限的點組成的集合為______.答案:∵平面直角坐標系內(nèi)第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內(nèi)第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.17.已知AB和CD是曲線(t為參數(shù))的兩條相交于點P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。18.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.19.把下列直角坐標方程或極坐標方程進行互化:
(1)ρ(2cos?-3sin?)+1=0
(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.20.復數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.21.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.22.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域為______.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].23.(坐標系與參數(shù)方程選做題)在極坐標系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).24.設全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.25.設圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是()
A.
B.
C.
D.
答案:A26.若動點P到兩個定點F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點P的軌跡.答案:①當a=0時,||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點P的軌跡為直線:線段F1F2的垂直平分線.②當a=2時,||PF1|-|PF2||=2=|F1F2|,所以點P的軌跡為兩條射線.③當0<a<2時,||PF1|-|PF2||=a<|F1F2|,所以點P的軌跡是以F1、F2為焦點的雙曲線.27.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(
)
A.0個
B.1個
C.2個
D.無窮多個答案:C28.天氣預報說,在今后的三天中每一天下雨的概率均為40%,用隨機模擬的方法進行試驗,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計算器中的隨機函數(shù)產(chǎn)生0~9之間隨機整數(shù)的20組如下:
907966191925271932812458569683
431257393027556488730113537989
通過以上隨機模擬的數(shù)據(jù)可知三天中恰有兩天下雨的概率近似為(
)。答案:0.2529.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ30.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.31.已知a=4,b=1,焦點在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C32.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:33.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°34.計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.35.在極坐標中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()
A.
B.
C.
D.答案:A36.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)37.已知實數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據(jù)點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.38.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b39.
如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A40.直三棱柱ABC-A1B1C1
中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.41.參數(shù)方程(θ為參數(shù))表示的曲線為()
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分答案:D42.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-π4)
(1)求直線l的傾斜角;
(2)若直線l與曲線C交于A,B兩點,求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過點(0,22),傾斜角為60°的直線.(2)l的直角坐標方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.43.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長的三角形是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定答案:B44.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A45.
008年北京成功舉辦了第29屆奧運會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運會官方票務網(wǎng)站公布的幾種球類比賽的門票價格,某球迷賽前準備用12000元預定15張下表中球類比賽的門票:
比賽項目
票價(元/場)
籃球
1000
足球
800
乒乓球
500
若在準備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個球迷想預定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費用不超過男籃門票的費用,則可以預訂男籃門票數(shù)為
A.2
B.3
C.4
D.5
答案:D46.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.47.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.48.函數(shù)f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,當x∈[-2,2]時,求f(x)的最值,并說明當f(x)取最值時的x的值;
(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當x=-2時,fmax(x)=f(-2)=11當x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.49.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標為()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B50.在班級隨機地抽取8名學生,得到一組數(shù)學成績與物理成績的數(shù)據(jù):
數(shù)學成績6090115809513580145物理成績4060754070856090(1)計算出數(shù)學成績與物理成績的平均分及方差;
(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強弱;(r≥0.75為強)
(3)求出數(shù)學成績x與物理成績y的線性回歸直線方程,并預測數(shù)學成績?yōu)?10的同學的物理成績.答案:(1)計算出數(shù)學成績與物理成績的平均分及方差;.x=100,.y=65,數(shù)學成績方差為750,物理成績方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強弱;r=6675≈0.94>0.75,相關(guān)性較強;(8分)(3)求出數(shù)學成績x與物理成績y的線性回歸直線方程,并預測數(shù)學成績?yōu)?10的同學的物理成績.y=0.6x+5,預測數(shù)學成績?yōu)?10的同學的物理成績?yōu)?1.(12分)第3卷一.綜合題(共50題)1.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內(nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形2.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81
243=81×3+0
則324與243的最大公約數(shù)為81又135=81×1+54
81=54×1+27
54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。3.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.4.設z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B5.下列各式中錯誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C6.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.7.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)8.拋物線y2=4x的焦點坐標為()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B9.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.10.已知隨機變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.11.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°12.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B13.一個底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.14.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7215.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為16.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.17.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A18.算法框圖中表示判斷的是()A.
B.
C.
D.
答案:∵在算法框圖中,表示判斷的是菱形,故選B.19.直線2x+y-3=0與直線3x+9y+1=0的夾角是()
A.
B.a(chǎn)rctan2
C.
D.答案:C20.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對應的點為()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B21.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機取出3個乒乓球,則其中含有紅色乒乓球個數(shù)的數(shù)學期望是______.答案:由題設知含有紅色乒乓球個數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.22.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應準線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標準方程為:x225+y29=1,它的右焦點(4,0),右準線方程為:x=254.一個焦點到相應準線的距離為:254-4=94.故為:94.23.下列說法中正確的有()
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個極端值的影響,平均數(shù)受樣本中的每一個數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.正確向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學模型是幾何概型,故④不正確,故選B.24.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()
A.互斥事件
B.對立事件
C.不是互斥事件
D.前者都不對答案:D25.x2+(m-3)x+m=0
一個根大于1,一個根小于1,m的范圍是______.答案:設f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.26.凡自然數(shù)都是整數(shù),而
4是自然數(shù)
所以4是整數(shù).以上三段論推理()
A.正確
B.推理形式不正確
C.兩個“自然數(shù)”概念不一致
D.兩個“整數(shù)”概念不一致答案:A27.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()
A.2
B.
C.
D.
答案:D28.已知f(x)=,則不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}29.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D30.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達點Q,則點Q的坐標為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C31.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x32.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B33.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A34.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數(shù)a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D35.直線L1:x-y=0與直線L2:x+y-10=0的交點坐標是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A36.已知動點P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動點P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動點P(x,y)到兩定點(-2,0),(2,0)的距離之差等于2,由雙曲線定義知動點P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).37.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.38.拋物線y=4x2的焦點坐標為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B39.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年保姆看護老人協(xié)議樣本
- 投資入股協(xié)議書范文
- 【初中地理】第二章地圖知識點每日一背-2024-2025學年七年級地理上學期(人教版2024)
- 2024年環(huán)境衛(wèi)生治理合同協(xié)議書范本
- 房產(chǎn)投資合作協(xié)議書
- 戶外店鋪合作協(xié)議范本
- 家庭教育委托協(xié)議書新范本
- 中外貨物買賣合同要點解讀
- 有關(guān)上海租賃住房合同范本
- 企業(yè)擔保借款合同書
- 高中語文必修教材解讀
- 中南大學湘雅醫(yī)院特色專病門診和多學科聯(lián)合門診管理辦法
- 新小學數(shù)學三年級上冊《一個因數(shù)中間有零的乘法》ppt課件
- 乒乓球比賽分組對陣表(8人、16人、32人)
- 《電子商務基礎(chǔ)》試題全庫
- 中英文版戰(zhàn)略合作協(xié)議CooperationAgreement
- 重點用能單位能源計量審查規(guī)范
- 首件檢驗作業(yè)指導書
- 8000噸每年P(guān)E片材擠出設計說明書
- 防火涂層厚度檢查記錄表 (2)
- 食品工廠如何進行蟲害控制以滿足國際食品安全認證審核標準
評論
0/150
提交評論