2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年昌吉職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.分析如圖的程序:若輸入38,運行右邊的程序后,得到的結果是

______.答案:根據(jù)程序語句,其意義為:輸入一個x,使得9<x<100a=x\10

為去十位數(shù)b=xMOD10

去余數(shù),即取個位數(shù)x=10*b+a

重新組合數(shù)字,用原來二位數(shù)的十位當個位,個位當十位否則說明輸入有誤故當輸入38時輸出83故為:832.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且

則滿足條件的函數(shù)f(x)有()

A.6個

B.10個

C.12個

D.16個答案:C3.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:2564.一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當點A運動時點P的軌跡是以點O,D為焦點,長軸長為R的橢圓.故選B.5.用數(shù)學歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當n=1時,左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當n=1時,3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時,等式左端=1×4=4故為:4.6.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)7.如圖,⊙O中弦AB,CD相交于點P,已知AP=3,BP=2,CP=1,則DP=()

A.3

B.4

C.5

D.6答案:D8.若圓錐的側面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.9.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1210.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學,老師打算組織同學們集體去游泳,除需購買若干張游泳卡外,每次游泳還需包一輛汽車,無論乘坐多少名同學,每次的包車費均為40元.

若使每個同學游8次,每人最少應交多少元錢?答案:設買x張游泳卡,總開支為y元,則每批去x名同學,共需去48×8x=384x批,總開支又分為:①買卡所需費用240x;②包車所需費用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當且僅當x=64x時,即x=8時取等號.∴當x=8時,總開支y的最大值為3840元,此時每人最少應交384048=80(元).答:若使每個同學游8次,每人最少應交80元錢.11.一個箱中原來裝有大小相同的

5

個球,其中

3

個紅球,2

個白球.規(guī)定:進行一次操

作是指“從箱中隨機取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補一個紅球放到箱中.”

(1)求進行第二次操作后,箱中紅球個數(shù)為

4

的概率;

(2)求進行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學期望.答案:(1)設A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進行第二次操作后,箱中紅球個數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設進行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進行第二次操作后,箱中紅球個數(shù)X的分布列為:進行第二次操作后,箱中紅球個數(shù)X的數(shù)學期望EX=3×925+4×1425+5×225=9325.12.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:

表1:

x123f(x)231表2:

x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當x=1時,g[f(1)]=g[2]=2不滿足方程;當x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}13.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。14.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.

①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.

②解①②得x=-79,y=-73.故應填:(-79,-73).15.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8316.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A17.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.

A.80

B.160

C.320

D.160答案:B18.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運載一個長方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計4.2米,箱寬3米,若要求通過隧道時,車體不得超過中線.試問這輛卡車是否能通過此隧道,請說明理由.答案:建立如圖所示的坐標系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因為1.6+3=4.6>4.2,所以,卡車能夠通過此隧道.19.給出下列問題:

(1)求面積為1的正三角形的周長;

(2)求鍵盤所輸入的三個數(shù)的算術平均數(shù);

(3)求鍵盤所輸入兩個數(shù)的最小數(shù);

(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當自變量取相應值時的函數(shù)值.

其中不需要用條件語句描述的算法的問題有()A.1個B.2個C.3個D.4個答案:(1)求面積為1的正三角形的周長用順序結構即可,故不需要用條件語句描述;(2)求鍵盤所輸入的三個數(shù)的算術平均數(shù)用順序結構即可解決問題,不需要用條件語句描述;(3)求鍵盤所輸入兩個數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問題的解決要用到條件語句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當自變量取相應值時的函數(shù)值,由于此函數(shù)是一個分段函數(shù),所以要用條件結構選擇相應的函數(shù)解析式,需要用條件語句描述.綜上,(3)(4)兩個問題要用到條件語句描述,(1),(2)不需要用條件語句描述故選B20.設O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p21.某同學參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設這位同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學得300分的概率為

;這名同學至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。22.已知:關于x的方程2x2+kx-1=0

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.23.橢圓x216+y27=1上的點M到左準線的距離為53,則點M到左焦點的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點F1的距離與其到左準線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF

1d=34∴M到左焦點的距離為MF1=53×34=54故選D.24.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.25.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質,可得|xy|<a26.在一個倒置的正三棱錐容器內(nèi)放入一個鋼球,鋼球恰與棱錐的四個面都接觸,過棱錐的一條側棱和高作截面,正確的截面圖形是()A.

B.

C.

D.

答案:由題意作出圖形如圖:SO⊥平面ABC,SA與SO的平面與平面SBC垂直,球與平面SBC的切點在SD上,球與側棱SA沒有公共點所以正確的截面圖形為B選項故選B.27.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.28.某種細菌在培養(yǎng)過程中,每15分鐘分裂一次(由一個分裂成兩個),這種細菌由1個繁殖成4096個需經(jīng)過()A.12小時B.4小時C.3小時D.2小時答案:設共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個小時.故為C29.不等式的解集

.答案:;解析:略30.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實數(shù)a,b,m,n的大小關系可能是()

A.m<a<b<n

B.a(chǎn)<m<n<b

C.a(chǎn)<m<b<n

D.m<a<n<b答案:A31.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結論)”,上面推理的錯誤在于______(大前提、小前提、結論).答案:∵當a>1時,函數(shù)是一個增函數(shù),當0<a<1時,指數(shù)函數(shù)是一個減函數(shù)∴y=ax是增函數(shù)這個大前提是錯誤的,從而導致結論錯.故為:大前提.32.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰三角形,腰AB=AC=1,如圖,則平面圖形的實際面積為()

A.1

B.2

C.

D.

答案:A33.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個交點,則f(x)=0的所有實數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關于y軸對稱∴其圖象與x軸有四個交點也關于y軸對稱∴方程f(x)=0的所有實根之和為0故為:034.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點,則該函數(shù)的所有零點之和為()A.4B.2C.1D.0答案:因為函數(shù)f(x)為偶函數(shù),所以函數(shù)圖象關于y軸對稱.又其圖象與x軸有四個交點,所以四個交點關于y軸對稱,不妨設四個交點的橫坐標為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.35.設隨機變量x~B(n,p),若Ex=2.4,Dx=1.44則()

A.n=4,p=0.6

B.n=6,p=0.4

C.n=8,p=0.3

D.n=24,p=0.1答案:B36.一口袋內(nèi)裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)ξ是一個隨機變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故為C911(38)10(58)237.直線過原點且傾角的正弦值是45,則直線方程為______.答案:因為傾斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點,由直線的點斜式方程得到:y=±43x故為:y=±43x38.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(

)

A.

B.

C.

D.

答案:C39.已知點(3,1)和(-4,6)在直線3x-2y+a=0的兩側,則實數(shù)a的取值范圍是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C40.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B41.已知m,n為正整數(shù).

(Ⅰ)用數(shù)學歸納法證明:當x>-1時,(1+x)m≥1+mx;

(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學歸納法證明:當x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學歸納法證明:(ⅰ)當m=1時,原不等式成立;當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設當m=k時,不等式成立,即(1+x)k≥1+kx,則當m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當n=1時,3≠4,等式不成立;當n=2時,32+42=52,等式成立;當n=3時,33+43+53=63,等式成立;當n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學歸納法證明:當x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(ⅰ)當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設當m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.42.經(jīng)過原點,圓心在x軸的負半軸上,半徑等于2的圓的方程是______.答案:∵圓過原點,圓心在x軸的負半軸上,∴圓心的橫坐標的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=243.(坐標系與參數(shù)方程選做題)在平面直角坐標系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點坐標為______.答案:在平面直角坐標系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點坐標為(1,1),故為(1,1).44.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(2,16)則a的值是()A.14B.12C.2D.4答案:設指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.45.設a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.46.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標準形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)47.如右圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41

C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41

C12

C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.48.滿足條件|2z+1|=|z+i|的復數(shù)z在復平面上對應點的軌跡是______.答案:設復數(shù)z在復平面上對應點的坐標為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡可得x2+

y2+43x

=

0,表示一個圓,故為圓.49.設曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()

A.1

B.2

C.3

D.4答案:B50.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C第2卷一.綜合題(共50題)1.(坐標系與參數(shù)方程選做題)在極坐標系中,點M(ρ,θ)關于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).2.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.3.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D4.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。5.設兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A6.復數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復平面上的對應點只可能位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復數(shù)Z對應的點的實部和虛部都小于零,∴復數(shù)在第三象限,故選C.7.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′8.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B9.把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構成的圖形是()

A.一條線段

B.一段圓弧

C.圓上一群孤立點

D.一個單位圓答案:D10.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.11.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.12.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2

012”時,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要條件.故選A.13.長方體的共頂點的三個側面面積分別為3,5,15,則它的體積為______.答案:設長方體過同一頂點的三條棱長分別為a,b,c,∵從長方體一個頂點出發(fā)的三個面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.14.如圖給出的是計算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內(nèi)應填入i=______.答案:∵該程序的功能是計算1+13+15+…+12013的值,最后一次進入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應該填的語句是:i=i+2.故為:i+2.15.在y=2x,y=log2x,y=x2,y=cosx這四個函數(shù)中,當0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立的函數(shù)的個數(shù)是()A.0B.1C.2D.3答案:當0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立,說明函數(shù)一個遞增的越來越慢的函數(shù)或者是一個遞減的越來越快的函數(shù)或是一個先遞增得越來越慢,再遞減得越來越快的函數(shù)考查四個函數(shù)y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來越慢型,函數(shù)y=cosx在(0,1)是遞減得越來越快型,y=2x,y=x2,這兩個函數(shù)都是遞增得越來越快型綜上分析知,滿足條件的函數(shù)有兩個故選C16.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()

A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角

B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角

C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角

D.以上都不對答案:B17.某廠2011年的產(chǎn)值為a萬元,預計產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.18.在四邊形ABCD中,若=+,則()

A.ABCD為矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四邊形答案:D19.如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為b>9;故為:b>9.20.如果如圖所示的程序中運行后輸出的結果為132,那么在程序While后面的“條件”應為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1121.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1622.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結構特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺組成。球的半徑為1,圓臺的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺=46πcm2。23.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C24.某程序框圖如圖所示,該程序運行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運行過程中各變量值變化如下表:是否繼續(xù)循環(huán)

S

K循環(huán)前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最終輸出結果k=4故為A25.某商人將彩電先按原價提高40%,然后“八折優(yōu)惠”,結果是每臺彩電比原價多賺144元,那么每臺彩電原價是______元.答案:設每臺彩電原價是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.26.

點M分有向線段的比為λ,已知點M1(1,5),M2(2,3),λ=-2,則點M的坐標為()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C27.在某電視歌曲大獎賽中,最有六位選手爭奪一個特別獎,觀眾A,B,C,D猜測如下:A說:獲獎的不是1號就是2號;A說:獲獎的不可能是3號;C說:4號、5號、6號都不可能獲獎;D說:獲獎的是4號、5號、6號中的一個.比賽結果表明,四個人中恰好有一個人猜對,則猜對者一定是觀眾

獲特別獎的是

號選手.答案:C,3.解析:推理如下:因為只有一人猜對,而C與D互相否定,故C、D中一人猜對。假設D對,則推出B也對,與題設矛盾,故D猜錯,所以猜對者一定是C;于是B一定猜錯,故獲獎者是3號選手(此時A錯).28.在平面直角坐標系xOy中,點P的坐標為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標系,則在下列選項中,不是點P極坐標的是()

A.()

B.()

C.()

D.()答案:D29.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.

A.80

B.160

C.320

D.160答案:B30.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設,x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)31.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;32.如圖,橢圓C2x2a2+

y2b2=1的焦點為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設n為過原點的直線,l是與n垂直相交與點P,與橢圓相交于A,B兩點的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),假設使OA?OB=0成立的直線l存在.(i)當l不垂直于x軸時,設l的方程為y=kx+m,由l與n垂直相交于P點,且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時直線l不存在.(ii)當l垂直于x軸時,滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點的坐標為(1,32),(1,-32)或(-1,32),(-1,-32).當x=1時,OA?OB=(1,32)?

(1,-32)=-54≠0.當x=-1時,OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.33.將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關于原點對稱,試求平移后的圖形對應的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關于原點對稱,試求平移后的圖形對應的函數(shù)解析式.34.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24035.某公司為慶祝元旦舉辦了一個抽獎活動,現(xiàn)場準備的抽獎箱里放置了分別標有數(shù)字1000、800﹑600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數(shù)字等額的獎金(元),并規(guī)定摸到標有數(shù)字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標有數(shù)字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設ξ表示摸球后所得的獎金數(shù),由于參與者摸取的球上標有數(shù)字1000,800,600,0,當摸到球上標有數(shù)字0時,可以再摸一次,但獎金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.36.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.37.使關于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。38.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是從這個圓上隨機的取一個點,對應的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點,根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1639.如圖,在半徑為7的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.40.下列說法不正確的是()A.圓柱側面展開圖是一個矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側面展開圖是一個矩形,A正確,因為母線長相等,得到圓錐的軸截面是一個等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.41.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當α為鈍角時,tanα為負,所以k1=tanα1<0.綜上k1<k3<k2,故選A.42.直線y=kx+1與圓x2+y2=4的位置關系是()

A.相交

B.相切

C.相離

D.與k的取值有關答案:A43.若直線y=x+b與圓x2+y2=2相切,則b的值為

______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.44.(坐標系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8245.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設n=k時1-xk2>0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當n=1時,1-x12<0;設n=k時1-xk2<0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+146.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B47.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C48.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當a>0時,方程對應的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>149.已知,向量與向量的夾角是,則x的值為()

A.±3

B.±

C.±9

D.3答案:D50.給出命題:

①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;

②利用樣本點的散點圖可以直觀判斷兩個變量的關系是否可以用線性關系表示;

③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預測變量的取值和變化趨勢;

④線性相關關系就是兩個變量間的函數(shù)關系.其中正確的命題是(

A.①②

B.①④

C.①②③

D.①②③④答案:D第3卷一.綜合題(共50題)1.若a<b<c,x<y<z,則下列各式中值最大的一個是()

A.a(chǎn)x+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.a(chǎn)x+by+cz答案:D2.定義平面向量之間的一種運算“⊙”如下:對任意的=(m,n),=(p,q)

,令⊙=mq-np,下面說法錯誤的序號是()

①若若a與共線,則⊙=0

②⊙=⊙a

③對任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A3.已知橢圓的焦點為F1,F(xiàn)2,A在橢圓上,B在F1A的延長線上,且|AB|=|AF2|,則B點的軌跡形狀為()

A.橢圓

B.雙曲線

C.圓

D.兩條平行線答案:C4.若f(x)是定義在R上的函數(shù),滿足對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.5.已知復數(shù)z=2+i,則z2對應的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復數(shù)z2的實部等于3,虛部等于4.所以z2對應的點在第Ⅰ象限.故選A.6.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A7.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.8.用反證法證明:“a>b”,應假設為()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.a(chǎn)≤b答案:D9.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經(jīng)過原點的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標為(2,2),∵圓經(jīng)過原點,∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.10.拋物線y=4x2的焦點坐標是______.答案:由題意可知x2=14y∴p=18∴焦點坐標為(0,116)故為(0,116)11.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當且僅當3a+1=3b+1=3c+1,即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3212.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關系得到,40n=0.125,∴n=320.故選B.13.設z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B14.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C15.用行列式討論關于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)16.如果一個直角三角形的兩條邊長分別是6和8,另一個與它相似的直角三角形邊長分別是4和3及x,那么x的值的個數(shù)為()

A.1個

B.2個

C.2個以上但有限

D.無數(shù)個答案:B17.同時擲兩顆骰子,得到的點數(shù)和為4的概率是______.答案:同時擲兩顆骰子得到的點數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11218.要從已編號(1~60)的60枚最新研制的某型導彈中隨機抽取6枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B19.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.20.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實根個數(shù)是()

A.1

B.2

C.3

D.2006答案:B21.在半徑為1的圓內(nèi)任取一點,以該點為中點作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點必須在半徑為12圓內(nèi),則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.22.已知某幾何體的三視圖如圖,畫出它的直觀圖,求該幾何體的表面積和體積.答案:由三視圖可知:該幾何體是由下面長、寬、高分別為4、4、2的長方體,上面為高是2、底面是邊長分別為4、4的矩形的四棱錐,而組成的幾何體.它的直觀圖如圖.∴S表面積=4×2×4+4×4+4×12×4×22=48+162.V體積=4×4×2+13×4×4×2=1283.23.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()

A.432

B.288

C.216

D.108答案:C24.已知點M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點的距離,它的最小值轉化為原點到直線3x+4y=15的距離:d=155=3.故為3.25.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)26.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫出當輸入一個同學的成績x時,輸出這個同學屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個成績X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結束27.中心在原點,焦點在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(

A.

B.

C.

D.答案:B28.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.29.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.30.已知拋物線C:y2=4x的焦點為F,點A在拋物線C上運動.

(1)當點A,P滿足AP=-2FA,求動點P的軌跡方程;

(2)設M(m,0),其中m為常數(shù),m∈R+,點A到M的距離記為d,求d的最小值.答案:(1)設動點P的坐標為(x,y),點A的坐標為(xA,yA),則AP=(x-xA,y-yA),因為F的坐標為(1,0),所以FA=(xA-1,yA),因為AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.31.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).32.已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B33.一張紙上畫有一個半徑為R的圓O和圓內(nèi)一個定點A,且OA=a,折疊紙片,使圓周上某一點A′剛好與點A重合.這樣的每一種折法,都留下一條折痕.當A′取遍圓周上所有點時,求所有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論