2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年渤海石油職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D2.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域為(0,+∞).故為(0,+∞).3.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.

(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;

(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.4.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.5.寫出1×2×3×4×5×6的一個算法.答案:按照逐一相乘的程序進(jìn)行第一步:計算1×2,得到2;第二步:將第一步的運算結(jié)果2與3相乘,得到6;第三步:將第二步的運算結(jié)果6與4相乘,得到24;第四步:將第三步的運算結(jié)果24與5相乘,得到120;第五步:將第四的運算結(jié)果120與6相乘,得到720;第六步:輸出結(jié)果.6.袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C7.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內(nèi),另外的四個頂點在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D8.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.9.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時,f(x)=g(x)?

(2)當(dāng)x為何值時,f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當(dāng)x=0時,f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時,f(x)>1;當(dāng)x=0時,f(x)=1;當(dāng)x<0時,f(x)<1.(3)由圖可知:當(dāng)x>1時,g(x)>3;當(dāng)x=1時,g(x)=3;當(dāng)x<1時,g(x)<3.10.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時取等號.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點為(14,16).11.在極坐標(biāo)系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A12.

若向量

=(3,2),=(0,-1),=(-1,2),則向量2-的坐標(biāo)坐標(biāo)是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D13.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.14.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).15.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.16.已知x,y的取值如下表所示:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測當(dāng)x=2時,y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測當(dāng)x=2時,y=0.95×2+2.6=4.5故為:4.517.下面對算法描述正確的一項是:()A.算法只能用自然語言來描述B.算法只能用圖形方式來表示C.同一問題可以有不同的算法D.同一問題的算法不同,結(jié)果必然不同答案:算法的特點:有窮性,確定性,順序性與正確性,不唯一性,普遍性算法可以用自然語言、圖形語言,程序語言來表示,故A、B不對同一問題可以用不同的算法來描述,但結(jié)果一定相同,故D不對.C對.故應(yīng)選C.18.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D19.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.20.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.21.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系.22.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.23.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點,那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點,則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對值等于半徑,F(xiàn)=0,E≠0.故選C.24.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B25.某細(xì)胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細(xì)胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細(xì)胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細(xì)胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細(xì)胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:25626.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()

A.

B.

C.±

D.±答案:C27.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=128.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.29.四面體ABCD中,設(shè)M是CD的中點,則化簡的結(jié)果是()

A.

B.

C.

D.答案:A30.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7231.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D32.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是

______.答案:∵|a|a||=1,|2b|b||=2

∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得

|p|的取值范圍[1,3],故為[1,3].33.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A34.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C35.如圖,在復(fù)平面內(nèi),點A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點是()A.AB.BC.CD.D答案:兩個復(fù)數(shù)是共軛復(fù)數(shù),兩個復(fù)數(shù)的實部相同,下部相反,對應(yīng)的點關(guān)于x軸對稱.所以點A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點是B.故選B.36.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。37.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)38.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()

A.逗號

B.空格

C.分號

D.頓號答案:A39.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.40.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()

A.+=

B.與方向相同

C.⊥

D.∥答案:D41.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應(yīng)是一條射線.故為一條射線.42.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()

A.5-

B.5+

C

D.10答案:B43.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°44.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C45.拋物線y=4x2的焦點坐標(biāo)為()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B46.已知橢圓的焦點為F1,F(xiàn)2,A在橢圓上,B在F1A的延長線上,且|AB|=|AF2|,則B點的軌跡形狀為()

A.橢圓

B.雙曲線

C.圓

D.兩條平行線答案:C47.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.48.(本題滿分12分)

已知:

求證:答案:.證明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案49.設(shè)P點在x軸上,Q點在y軸上,PQ的中點是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點是M(-1,2),∴由中點坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2550.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當(dāng),比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;

(2)比賽打滿七局的概率.(3)記比賽結(jié)束時的比賽局?jǐn)?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時,比賽的局?jǐn)?shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)第2卷一.綜合題(共50題)1.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時x2-2x=-1∴f(3)=-1故為:-12.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選

C.3.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當(dāng)且僅當(dāng),又,故時不等式取,選C。4.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.5.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.6.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B7.證明:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線的方程為,直線的方程為.設(shè)底邊上任意一點為,則到的距離;到的距離;到的距離.因為,所以,結(jié)論成立.8.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:89.某項考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.

(Ⅰ)求他不需要補考就可獲得證書的概率;

(Ⅱ)在這項考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補考合格”為事件B2.(Ⅰ)不需要補考就獲得證書的事件為A1?B1,注意到A1與B1相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨立性與互斥性,根據(jù)相互獨立事件同時發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.10.在甲、乙兩個盒子里分別裝有標(biāo)號為1、2、3、4的四個小球,現(xiàn)從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.

(1)求取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率;

(2)求取出的兩個小球上標(biāo)號之和能被3整除的概率;

(3)求取出的兩個小球上標(biāo)號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個小球上標(biāo)號為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率P=38;(2)其中取出的兩個小球上標(biāo)號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標(biāo)號之和能被3整除的概率為516;(3)其中取出的兩個小球上標(biāo)號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標(biāo)號之和大于5的概率P=3811.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c12.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+

(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時,5t2-2t+2的最小值為95所以當(dāng)t=15時,|b-a|的最小值是95=355故為:35513.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.14.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對應(yīng)關(guān)系,A中的2個函數(shù)的值域不同,B中的2個函數(shù)的定義域不同,C中的2個函數(shù)的對應(yīng)關(guān)系不同,只有D的2個函數(shù)的定義域、值域、對應(yīng)關(guān)系完全相同,故選D.15.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標(biāo)為(2,π4).故為:(2,π4).16.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C17.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D18.已知點A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q.

(1)證明點Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點Q的坐標(biāo).答案:(1)∵點Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點Q的軌跡是以A、B為焦點的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)19.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點F(12,0),準(zhǔn)線x=-12,延長PM交準(zhǔn)線于H點.則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點,可計算得P0(3,94),另一交點(-13,118)舍去.當(dāng)P重合于P0時,|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.20.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D21.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.22.在同一個坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D23.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.24.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運貨物,經(jīng)測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B25.拋物線y2=8x的焦點坐標(biāo)是______答案:拋物線y2=8x,所以p=4,所以焦點(2,0),故為(2,0)..26.已知隨機變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C27.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()

A.6塊

B.7塊

C.8塊

D.9塊答案:B28.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()

A.101

B.808

C.1212

D.2012答案:B29.已知點B是點A(2,-3,5)關(guān)于平面xOy的對稱點,則|AB|=()

A.10

B.

C.

D.38答案:A30.頻率分布直方圖的重心是()

A.眾數(shù)

B.中位數(shù)

C.標(biāo)準(zhǔn)差

D.平均數(shù)答案:D31.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C32.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D33.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設(shè)正確的是()

A.假設(shè)a、b、c都是偶數(shù)

B.假設(shè)a、b、c都不是偶數(shù)

C.假設(shè)a、b、c至多有一個偶數(shù)

D.假設(shè)a、b、c至多有兩個偶數(shù)答案:B34.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標(biāo)為(2,92).故為:(2,92).35.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()

A.至少有1個白球;都是白球

B.至少有1個白球;至少有1個紅球

C.恰有1個白球;恰有2個白球

D.至少有一個白球;都是紅球答案:C36.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時,截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時,截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓37.設(shè)復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為______.答案:復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.38.①學(xué)校為了了解高一學(xué)生的情況,從每班抽2人進(jìn)行座談;②一次數(shù)學(xué)競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關(guān)情況;③運動會服務(wù)人員為參加400m決賽的6名同學(xué)安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分?jǐn)?shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機抽樣,故選D.39.直線的參數(shù)方程為,l上的點P1對應(yīng)的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C40.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大??;

(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)41.有一農(nóng)場種植一種水稻在同一塊稻田中連續(xù)8年的年平均產(chǎn)量如下:(單位:kg)

450

430

460

440

450

440

470

460;

則其方差為()

A.120

B.80

C.15

D.150答案:D42.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.43.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.44.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(

)

A.0個

B.1個

C.2個

D.無窮多個答案:C45.已知當(dāng)拋物線型拱橋的頂點距水面2米時,量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點距水面2米時,量得水面寬8米∴點(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4246.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項為B47.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A48.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341349.設(shè)拋物線x2=12y的焦點為F,經(jīng)過點P(2,1)的直線l與拋物線相交于A、B兩點,若點P恰為線段AB的中點,則|AF|+|BF|=______.答案:過點A,B,P分別作拋物線準(zhǔn)線y=-3的垂線,垂足為C,D,Q,據(jù)拋物線定義,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故為850.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:0第3卷一.綜合題(共50題)1.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點坐標(biāo)為(1,1),故為(1,1).2.當(dāng)a≠0時,y=ax+b和y=bax的圖象只可能是()

A.

B.

C.

D.

答案:A3.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標(biāo)為(2,92).故為:(2,92).4.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時成立假設(shè)不等式當(dāng)n=k(k≥1)時成立當(dāng)n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立5.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負(fù)?2k-4<0?k<2.故為:C6.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D7.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.8.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O(shè)為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.9.已知雙曲線x2-y22=1,經(jīng)過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)當(dāng)直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的兩個不同的根是兩交點A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2

又M(1,1)為線段AB的中點∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時,方程(1)無實數(shù)解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當(dāng)x=1時,直線經(jīng)過點M但不滿足條件,綜上,符合條件的直線l不存在10.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.11.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數(shù)是()

A.0個

B.1個

C.2個

D.3個答案:A12.若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),則點P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2913.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()

A.14

B.7

C.15

D.不能確定答案:A14.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B15.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.16.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ17.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.18.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(

A.

B.

C.7

D.答案:D19.設(shè)隨機變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C20.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.?dāng)?shù)學(xué)

C.外語

D.都一樣答案:B21.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()

A.

B.

C.2

D.2

答案:D22.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A23.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.24.老師在班級50名學(xué)生中,依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是()

A.隨機抽樣

B.分層抽樣

C.系統(tǒng)抽樣

D.以上都是答案:C25.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B26.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數(shù)a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點,∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.27.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()

A.-

B.-6

C.6

D.答案:C28.比較大小:a=0.20.5,b=0.50.2,則()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A29.直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.答案:證明:設(shè)點A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時,設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)(II)當(dāng)直線l不存在斜率時,設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(2,0)綜合(1)(2)可知,滿足條件的直線過定點(2,0).30.平面α外一點P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()

A.梯形

B.圓外切四邊形

C.圓內(nèi)接四邊

D.任意四邊形答案:B31.設(shè)A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3532.已知點A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論