2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年蘇州信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.2.1

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為

(1)分別求甲、乙、丙三臺機床各自加工零件是一等品的概率;

(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.答案:見解析解析:解:(1)設A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件①②③3.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結果,故選C.4.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()

A.1

B.

C.2

D.答案:A5.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm6.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B7.△ABC所在平面內點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經過△ABC的()A.重心B.垂心C.內心D.外心答案:設BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經過△ABC的重心故選A.8.已知三個數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序為______.答案:因為a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.9.已知x、y之間的一組數(shù)據(jù)如下:

x0123y8264則線性回歸方程y=a+bx所表示的直線必經過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經過點(1.5,5)故選C10.某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表

廣告費用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.11.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結構特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺組成。球的半徑為1,圓臺的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺=46πcm2。12.給出函數(shù)f(x)的一條性質:“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠成立故選D.13.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.14.某自動化儀表公司組織結構如圖所示,其中采購部的直接領導是()

A.副總經理(甲)

B.副總經理(乙)

C.總經理

D.董事會

答案:B15.用隨機數(shù)表法進行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數(shù)表法進行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.16.(選做題)在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點,則線段AB的中點的直角坐標為(

)。答案:(2.5,2.5)17.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對任意x∈Z使x2+2x+m≤0

D.對任意x∈Z使x2+2x+m>0答案:D18.設四邊形ABCD中,有且,則這個四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C19.凡自然數(shù)都是整數(shù),而

4是自然數(shù)

所以4是整數(shù).以上三段論推理()

A.正確

B.推理形式不正確

C.兩個“自然數(shù)”概念不一致

D.兩個“整數(shù)”概念不一致答案:A20.在極坐標系中,點A(2,π2)關于直線l:ρcosθ=1的對稱點的一個極坐標為______.答案:在直角坐標系中,A(0,2),直線l:x=1,A關于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標為(22,π4),故為

(22,π4).21.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關,u與v正相關

B.變量x與y正相關,u與v負相關

C.變量x與y負相關,u與v正相關

D.變量x與y負相關,u與v負相關答案:C22.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。23.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)當n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>

(2)根據(jù)(1)的結果猜測一個一般性結論,并加以證明.答案:(1)當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.24.在同一坐標系下,函數(shù)y=ax,y=bx,y=cx,y=dx的圖象如圖,則a、b、c、d、1之間從小到大的順序是______.答案:作直線x=1與各圖象相交,交點的縱坐標即為底數(shù),故從下到上依次增大.所以b<a<1<d<c故為:b,a,1,d,c25.設復數(shù)z=x+yi(x,y∈R)與復平面上點P(x,y)對應.

(1)設復數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

3)),當n為奇數(shù)時,動點P(x,y)的軌跡為C1;當n為偶數(shù)時,動點P(x,y)的軌跡為C2,且兩條曲線都經過點D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于233,求實數(shù)x0的取值范圍.答案:(1)方法1:①當n為奇數(shù)時,|z+3|-|z-3|=2a,常數(shù)a∈

(32

,

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當n為偶數(shù)時,|z+3|+|z-3|=4a,常數(shù)a∈

(32

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因為32<a<3,所以a=3,此時軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經過點D(2,2),且點D(2,2)對應的復數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對應的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對應的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設點A的坐標為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當0<43x0≤23即0<x0≤332時,|AB|2min=3-13x20≥43?0<x0≤5當43x0>23即x0>332時,|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)26.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計算a2,a3,a4

(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學歸納法證明這個猜想.①當n=1時,a1=1,命題成立.②假設n=k時命題成立,即ak=2k+1當n=k+1時ak+1=2a

k2+ak=2×2k+12+2k+1(把假設作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.27.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.28.若4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數(shù)字作答)答案:4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288029.(選做題)參數(shù)方程中當t為參數(shù)時,化為普通方程為(

)。答案:x2-y2=130.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)31.長為3的線段AB的端點A、B分別在x軸、y軸上移動,,則點C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C32.用反證法證明命題:“三角形三個內角至少有一個不大于60°”時,應假設______.答案:根據(jù)用反證法證明數(shù)學命題的方法和步驟,先把要證的結論進行否定,得到要證的結論的反面,而命題:“三角形三個內角至少有一個不大于60°”的否定為“三個內角都大于60°”,故為三個內角都大于60°.33.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點,若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故為:12a-32b+12c.34.已知數(shù)列{an}的前n項和Sn=an2+bn=c

(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.35.將一枚質地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.36.用系統(tǒng)抽樣法要從160名學生中抽取容量為20的樣本,將160名學生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設在第1組中隨機抽到的號碼為x,則在第16組中應抽出的號碼為120+x.設第1組抽出的號碼為x,則第16組應抽出的號碼是8×15+x=126,∴x=6.故為:6.37.拋擲3顆質地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.38.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1439.以橢圓x23+y2=1的右焦點為焦點,且頂點在原點的拋物線標準方程為______.答案:∵橢圓x23+y2=1的右焦點F(2,0),∴以F(2,0)為焦點,頂點在原點的拋物線標準方程為y2=42x.故為:y2=42x.40.設A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()

A.0

B.6

C.0或6

D.0或-6答案:C41.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當k=1或2時,不一定有f(k)≥k2成立;對B,應有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D42.72的正約數(shù)(包括1和72)共有______個.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計數(shù)原理共3×4個.故為:12.43.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.44.如圖:已知圓上的弧

AC=

BD,過C點的圓的切線與BA的延長線交于E點,證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)45.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.46.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C47.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},當x=0時,2x+1=1;當x=1時,2x+1=3,∴N={1,3}則M∩N={1}.故選A.48.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.49.雙曲線的漸進線方程是3x±4y=0,則雙曲線的離心率等于______.答案:由題意可得,當焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.50.4名同學分別報名參加學校的足球隊,籃球隊,乒乓球隊,每人限報其中的一個運動隊,不同報法的種數(shù)是()

A.34

B.43

C.24

D.12答案:A第2卷一.綜合題(共50題)1.某項選拔共有四輪考核,每輪設有一個問題,能正確回答問題者進入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進入第三輪考核的概率.

(注:本小題結果可用分數(shù)表示)答案:(1)該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.2.已知函數(shù)f(x)=

-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由題意x+(x+1)f(x+1)=3.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°4.若根據(jù)10名兒童的年齡

x(歲)和體重

y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預報體重的回歸方程是

y=2x+7,已知這10名兒童的年齡分別是

2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C5.如圖所示的圓盤由八個全等的扇形構成,指針繞中心旋轉,可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉動轉盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.6.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C7.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計算a2,a3,a4

(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學歸納法證明這個猜想.①當n=1時,a1=1,命題成立.②假設n=k時命題成立,即ak=2k+1當n=k+1時ak+1=2a

k2+ak=2×2k+12+2k+1(把假設作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.8.直線2x-3y+10=0的法向量的坐標可以是答案:C9.某海域有A、B兩個島嶼,B島在A島正東40海里處.經多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)10.以拋物線的焦點弦為直徑的圓與其準線的位置關系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A11.設圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是()

A.

B.

C.

D.

答案:A12.設z是復數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.13.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.14.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C15.已知圓C:x2+y2-4x-5=0.

(1)過點(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標準方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設所求直線與圓交于A,B兩點,其坐標分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)16.設集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.17.用數(shù)學歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應增添的式子是______.答案:當n=k時,左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當n=k+1時,左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).18.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3519.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC20.已知||=2,||=,∠AOB=150°,點C在∠AOB內,且∠AOC=30°,設(m,n∈R),則=()

A.

B.

C.

D.答案:B21.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.22.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結果,∴點在直線的下方的概率是636=16故選A.23.一個樣本a,99,b,101,c中五個數(shù)恰成等差數(shù)列,則這個樣本的極差與標準差分別為(

)。答案:4;24.若直線ax+by+1=0與圓x2+y2=1相離,則點P(a,b)的位置是()

A.在圓上

B.在圓外

C.在圓內

D.以上都有可能答案:C25.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A26.已知θ是三角形內角且sinθ+cosθ=,則表示答案:C27.已知點A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點,則直線l在y軸上的截距的取值范圍是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A28.下列命題:

①垂直于同一直線的兩直線平行;

②垂直于同一直線的兩平面平行;

③垂直于同一平面的兩直線平行;

④垂直于同一平面的兩平面平行;

其中正確的有()

A.③④

B.①②④

C.②③

D.②③④答案:C29.方程組的解集是(

)答案:{(5,-4)}30.命題“每一個素數(shù)都是奇數(shù)”的否定是______.答案:原命題“每一個素數(shù)都是奇數(shù)”是一個全稱命題它的否定是一個特稱命題,即“有的素數(shù)不是奇數(shù)”故為:有的素數(shù)不是奇數(shù)31.設U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}32.設求證:答案:證明見解析解析:證明:∵

∴∴,∴本題利用,對中每項都進行了放縮,從而得到可以求和的數(shù)列,達到化簡的目的。33.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a

,

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.34.用數(shù)字1,2,3,4,5組成的無重復數(shù)字的四位偶數(shù)的個數(shù)為()

A.8

B.24

C.48

D.120答案:C35.已知圓O的兩弦AB和CD延長相交于E,過E點引EF∥CB交AD的延長線于F,過F點作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.36.若關于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實數(shù)m的取值范圍是______.答案:關于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當m-1≠0時(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)37.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(

A.

B.

C.

D.答案:B38.若定義在正整數(shù)有序對集合上的二元函數(shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D39.若隨機變量X的概率分布如下表,則表中a的值為()

X

1

2

3

4

P

0.2

0.3

0.3

a

A.1

B.0.8

C.0.3

D.0.2答案:D40.對任意的實數(shù)k,直線y=kx+1與圓x2+y2=2

的位置關系一定是()

A.相離

B.相切

C.相交但直線不過圓心

D.相交且直線過圓心答案:C41.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.42.一個類似于細胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機終止.設分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對答案:A43.下面五個命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯誤;(2)由共線向量的定義,方向相反的兩個向量一定是共線向量,故錯誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯誤;(4)因為|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)44.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.45.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B46.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為

______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.47.已知線段AB的兩端點坐標為A(9,-3,4),B(9,2,1),則線段AB與坐標平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C48.△ABC內接于以O為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內接于以O為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.49.如圖,PA,PB切⊙O于

A,B兩點,AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°50.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:3第3卷一.綜合題(共50題)1.已知平面α內有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B2.求原點至3x+4y+1=0的距離?答案:由原點坐標為(0,0),得到原點到已知直線的距離d=|3?0+4?0+1|32+42=15.3.不等式的解集

.答案:;解析:略4.已知定義在實數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A5.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是C31+C41+C51+…+C71=25故為:256.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.7.選修4-4參數(shù)方程與極坐標

在平面直角坐標系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以

-73≤2x0-y0≤73.8.已知命題p:“有的實數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實數(shù)沒有平方根.”,是一個特稱命題,非P是它的否定,應為全稱命題“所有實數(shù)都有平方根”故為:所有實數(shù)都有平方根.9.在調試某設備的線路設計中,要選一個電阻,調試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(

).答案:3.5kΩ10.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.ax-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A11.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.12.投擲一個質地均勻的、每個面上標有一個數(shù)字的正方體玩具,它的六個面中,有兩個面標的數(shù)字是0,兩個面標的數(shù)字是2,兩個面標的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標和縱坐標

(1)求點P落在區(qū)域C:x2+y2≤10內的概率;

(2)若以落在區(qū)域C上的所有點為頂點作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點P的坐標有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點P的坐標有:(0,0),(0,2),(2,0),(2,2),共4種D、故點P落在區(qū)域C:x2+y2≤10內的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.13.長方體的共頂點的三個側面面積分別為3,5,15,則它的體積為______.答案:設長方體過同一頂點的三條棱長分別為a,b,c,∵從長方體一個頂點出發(fā)的三個面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.14.用隨機數(shù)表法進行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數(shù)表法進行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.15.滿足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函數(shù)可以是f(x)=______.答案:若函數(shù)為對數(shù)函數(shù),不妨令f(x)=logax則f(xy)=loga(xy)=logax+logay=f(x)+f(y)滿足條件又∵f(3)=2∴l(xiāng)oga3=2解得a=3故f(x)=log3x故為:log3x16.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設n=k(k∈N*)時結論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)17.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A18.在用樣本頻率估計總體分布的過程中,下列說法正確的是()A.總體容量越大,估計越精確B.總體容量越小,估計越精確C.樣本容量越大,估計越精確D.樣本容量越小,估計越精確答案:∵用樣本頻率估計總體分布的過程中,估計的是否準確與總體的數(shù)量無關,只與樣本容量在總體中所占的比例有關,∴樣本容量越大,估計的月準確,故選C.19.在直角坐標系xOy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(I)求圓C的參數(shù)方程;

(II)設圓C與直線l交于點A,B,求弦長|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圓C的直角坐標方程為x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圓C的參數(shù)方程為x=5cosθy=5+5sinθ(θ為參數(shù))

…(4分)(Ⅱ)將直線l的參數(shù)方程代入圓C的直角坐標方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)設兩交點A,B所對應的參數(shù)分別為t1,t2,則t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)20.下列各式中錯誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C21.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.22.某學校三個社團的人員分布如下表(每名同學只參加一個社團):

聲樂社排球社武術社高一4530a高二151020學校要對這三個社團的活動效果里等抽樣調查,按分層抽樣的方法從社團成員中抽取30人,結果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3023.如圖所示的圓盤由八個全等的扇形構成,指針繞中心旋轉,可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉動轉盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.24.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點.用AB、AD、AA1表示向量MN,則MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.25.俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(

)A.B.C.D.答案:B解析:解:P(俊首發(fā))=

P(杰首發(fā))==P(俊、杰同首發(fā))=

選B評析:考察考生等可能事件的概率與相互獨立事件的概率問題。26.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因為正方形的邊長為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.27.證明空間任意無三點共線的四點A、B、C、D共面的充分必要條件是:對于空間任一點O,存在實數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點不共線,則由共面向量定理的推論知:四點A、B、C、D共面?對空間任一點O,存在實數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對于空間任一點O,存在實數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點A、B、C、D共面.所以,空間任意無三點共線的四點A、B、C、D共面的充分必要條件是:對于空間任一點O,存在實數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.28.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當sinα<sin(α+β)時,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.29.在5件產品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產品中,有3件一等品和2件二等品,從中任取2件,從5件產品中任取2件,共有C52=10種結果,∵“任取的2件產品都不是一等品”只有1種情況,其概率是110;“任取的2件產品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.30.設a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當0<x≤12時,函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點時,a=22,故虛線所示的y=logax的圖象對應的底數(shù)a應滿足22<a<1.故為:(22,1).31.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D32.如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.33.不等式log2(x+1)<1的解集為()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C34.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點,那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點,則圓心在y軸上,G=0,圓心的縱坐標的絕對值等于半徑,F(xiàn)=0,E≠0.故選C.35.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設方程有一根x1的絕對值大于或等于1,即假設|x1|≥1,以下結論正確的是()

A.(1)的假設錯誤,(2)的假設正確

B.(1)與(2)的假設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論