![2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁](http://file4.renrendoc.com/view/b2af92b96b0ca0420023ddde5899a623/b2af92b96b0ca0420023ddde5899a6231.gif)
![2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁](http://file4.renrendoc.com/view/b2af92b96b0ca0420023ddde5899a623/b2af92b96b0ca0420023ddde5899a6232.gif)
![2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁](http://file4.renrendoc.com/view/b2af92b96b0ca0420023ddde5899a623/b2af92b96b0ca0420023ddde5899a6233.gif)
![2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁](http://file4.renrendoc.com/view/b2af92b96b0ca0420023ddde5899a623/b2af92b96b0ca0420023ddde5899a6234.gif)
![2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁](http://file4.renrendoc.com/view/b2af92b96b0ca0420023ddde5899a623/b2af92b96b0ca0420023ddde5899a6235.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年遼寧政法職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:32.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.3.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是C31+C41+C51+…+C71=25故為:254.如圖表示空間直角坐標系的直觀圖中,正確的個數(shù)為()
A.1個
B.2個
C.3個
D.4個答案:C5.下表是關于某設備的使用年限(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請在給出的坐標系中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程
y=
bx+
a;
(3)估計使用年限為10年時,維修費用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應的點的坐標,寫出點的坐標,在坐標系描出點,得到散點圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當x=10時,y=1.23×10+0.08=12.38,所以估計當使用10年時,維修費用約為12.38萬元.6.袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C7.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤1788.(坐標系與參數(shù)方程選做題)過點(2,π3)且平行于極軸的直線的極坐標方程為______.答案:法一:先將極坐標化成直角坐標表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標表示,即ρsinθ=3.法二:在極坐標系中,直接構造直角三角形由其邊角關系得方程ρsinθ=3.設A(ρ,θ)是直線上的任一點,A到極軸的距離AH=2sinπ3=3,直接構造直角三角形由其邊角關系得方程ρsinθ=3.故為:ρsinθ=39.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對x分3種情況討論:①當x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時,不等式的解集為?.②當0≤x<12時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時其解集為{x|0<x<12}.③當x≥12
時,原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時其解集為{x|12≤x<2},?∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.10.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;
(1)求雙曲線的標準方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設雙曲線的標準方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標準方程為y216-x216=1.(2)設弦AB所在直線方程為y-2=k(x-4),A,B的坐標為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.11.如圖,在復平面內(nèi),點A表示復數(shù)z的共軛復數(shù),則復數(shù)z對應的點是()A.AB.BC.CD.D答案:兩個復數(shù)是共軛復數(shù),兩個復數(shù)的實部相同,下部相反,對應的點關于x軸對稱.所以點A表示復數(shù)z的共軛復數(shù)的點是B.故選B.12.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學歸納法證明:當x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學歸納法證明:(?。┊攎=1時,原不等式成立;當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設當m=k時,不等式成立,即(1+x)k≥1+kx,則當m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當n=1時,3≠4,等式不成立;當n=2時,32+42=52,等式成立;當n=3時,33+43+53=63,等式成立;當n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學歸納法證明:當x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊攎=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設當m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.13.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.14.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(
)
A.10組
B.9組
C.8組
D.7組答案:B15.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點.已知OP1=(1,0),則OP2010的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,1為公差的等差數(shù)列∴OP2010的坐標為(1,2009)故為(1,2009)16.請寫出所給三視圖表示的簡單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體17.在△ABC中,D為AB上一點,M為△ABC內(nèi)一點,且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.18.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點,試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.19.由1、2、3可以組成______個沒有重復數(shù)字的兩位數(shù).答案:沒有重復數(shù)字的兩位數(shù)共有3×2=6個故為:620.設F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4321.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若從散點圖分析,y與x線性相關,且
y=0.95x+
a,則
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∵y與x線性相關,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.22.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B23.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應,這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應1或2個y故選B.24.若點P分向量AB的比為34,則點A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.25.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A26.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C27.設a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()
A.
B.
C.
D.
答案:B28.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠成立故選D.29.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設是方程存在實數(shù)根x0為()
A.整數(shù)
B.奇數(shù)或偶數(shù)
C.正整數(shù)或負整數(shù)
D.自然數(shù)或負整數(shù)答案:A30.在正方形ABCD中,已知它的邊長為1,設=,=,=,則|++|的值為(
)
A.0
B.3
C.2+
D.2答案:D31.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(
)
A.3
B.2
C.-1
D.0答案:A32.設k>1,則關于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長軸在x軸上的橢圓
B.長軸在y軸上的橢圓
C.實軸在x軸上的雙曲線
D.實軸在y軸上的雙曲線答案:D33.閱讀下面的程序框圖,該程序運行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.34.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24035.在極坐標系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標系中,點(2
,
π6)化為直角坐標為(3,1),直線ρsinθ=2化為直角坐標方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2
,
π6)到直線ρsinθ=2的距離1,故為:1.36.根據(jù)下列條件,求圓的方程:
(1)過點A(1,1),B(-1,3)且面積最小;
(2)圓心在直線2x-y-7=0上且與y軸交于點A(0,-4),B(0,-2).答案:(1)過A、B兩點且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.37.六個不同大小的數(shù)按如圖形式隨機排列,設第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設這六個數(shù)分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.38.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C39.“a=18”是“對任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當“a=18”時,由基本不等式可得:“對任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數(shù)x,2x+ax≥1”為真命題;而“對任意的正數(shù)x,2x+ax≥1的”時,可得“a≥18”即“對任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A40.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),
(1)求a1,a2,a3并猜想數(shù)列{an}的通項公式;
(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當n=1時顯然成立.假設當n=k(k≥1)時成立,即ak=2k+1則當n=k+1時,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.41.若關于x的一元二次實系數(shù)方程x2+px+q=0有一個根為1+i(i是虛數(shù)單位),則p+q的值是()
A.-1
B.0
C.2
D.-2答案:B42.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.43.在空間直角坐標系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C44.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學歸納法證明f(2n)>n2時,f(2k+1)-f(2k)等于______.答案:因為假設n=k時,f(2k)=1+12+13+…+12k,當n=k+1時,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+145.在空間中,有如下命題:
①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個數(shù)為()個.
A.0
B.1
C.2
D.3答案:B46.下列說法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺
C.圓柱、圓錐、圓臺的底面都是圓
D.圓錐側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C47.已知O、A、M、B為平面上四點,且,則()
A.點M在線段AB上
B.點B在線段AM上
C.點A在線段BM上
D.O、A、M、B四點一定共線答案:B48.有3名同學要爭奪2個比賽項目的冠軍,冠軍獲得者共有______種可能.答案:第一個項目的冠軍有3種情況,第二個項目的冠軍也有3種情況,根據(jù)分步計數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.49.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).50.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.第2卷一.綜合題(共50題)1.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.2.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點之間的線段稱為球的弦),P為正方體表面上的動點,當弦MN最長時.PM?PN的最大值為______.答案:設點O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|
|PN|,∴當點P,M,N三點共線時,PM?PN取得最大值.此時PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當且僅當點P為正方體的一個頂點時上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.3.拋物線x2+y=0的焦點位于()
A.y軸的負半軸上
B.y軸的正半軸上
C.x軸的負半軸上
D.x軸的正半軸上答案:A4.已知O是正方形ABCD對角線的交點,在以O,A,B,C,D這5點中任意一點為起點,另一點為終點的所有向量中,
(1)與BC相等的向量有
______;
(2)與OB長度相等的向量有
______;
(3)與DA共線的向量有
______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有
CB、BC.5.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對答案:B6.為了讓學生更多地了解“數(shù)學史”知識,某中學高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學的聲音”的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)下面的頻率分布表,解答下列問題:
序號
(i)分組
(分數(shù))本組中間值
(Gi)頻數(shù)
(人數(shù))頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計501(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)為鼓勵更多的學生了解“數(shù)學史”知識,成績不低于85分的同學能獲獎,請估計在參賽的800名學生中大概有多少同學獲獎?
(3)請根據(jù)頻率分布表估計該校高二年級參賽的800名同學的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學生中大概有288名同學獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)7.下列命題:
①用相關系數(shù)r來刻畫回歸的效果時,r的值越大,說明模型擬合的效果越好;
②對分類變量X與Y的隨機變量的K2觀測值來說,K2越小,“X與Y有關系”可信程度越大;
③兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近1;
其中正確命題的序號是
______.(寫出所有正確命題的序號)答案:①是由于r可能是負值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯誤,②對分類變量X與Y的隨機變量的K2觀測值來說,K2越大,“X與Y有關系”可信程度越大;故②正確③兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近1;故③正確,故為:③8.設某批產(chǎn)品合格率為,不合格率為,現(xiàn)對該產(chǎn)品進行測試,設第ε次首次取到正品,則P(ε=3)等于()
A.
B.
C.
D.答案:C9.如圖為某公司的組織結(jié)構圖,則后勤部的直接領導是______.
答案:有已知中某公司的組織結(jié)構圖,可得專家辦公室直接領導:財務部,后勤部和編輯部三個部門,故后勤部的直接領導是專家辦公室.故為:專家辦公室.10.5本不同的書全部分給3個學生,每人至少一本,共有()種分法.
A.60
B.150
C.300
D.210答案:B11.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.12.選修4-4參數(shù)方程與極坐標
在平面直角坐標系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.13.已知a=20.5,,,則a,b,c的大小關系是()
A.a(chǎn)>c>b
B.a(chǎn)>b>c
C.c>b>a
D.c>a>b答案:B14.如圖,已知△ABC,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC.則AM:BM=()
A.2
B.4
C.6
D.7
答案:D15.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因為正方形的邊長為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.16.若90°<θ<180°,曲線x2+y2sinθ=1表示()
A.焦點在x軸上的雙曲線
B.焦點在y軸上的雙曲線
C.焦點在x軸上的橢圓
D.焦點在y軸上的橢圓答案:D17.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應在橢圓上或其內(nèi)部,即a>1,所以實數(shù)a的取值范圍是[1,7).故為[1,7).18.設是的相反向量,則下列說法一定錯誤的是()
A.∥
B.與的長度相等
C.是的相反向量
D.與一定不相等答案:D19.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()
A.
B.
C.
D.答案:D20.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)21.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當sinα<sin(α+β)時,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.22.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(
)
A.
B.
C.
D.答案:B23.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③24.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C25.已知G是△ABC的重心,O是平面ABC外的一點,若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.26.根據(jù)一組數(shù)據(jù)判斷是否線性相關時,應選用(
)
A.散點圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A27.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時α為第一象限角.或②sinα<0,cosα<0,此時α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.28.命題“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.對任意x∈Z使x2+2x+m≤0
D.對任意x∈Z使x2+2x+m>0答案:D29.設曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()
A.1
B.2
C.3
D.4答案:B30.已知菱形ABCD的頂點A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(Ⅰ)當直線BD過點(0,1)時,求直線AC的方程;
(Ⅱ)當∠ABC=60°時,求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因為四邊形ABCD為菱形,所以AC⊥BD.于是可設直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因為A,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設A,C兩點坐標分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點坐標為(3n4,n4).由四邊形ABCD為菱形可知,點(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因為四邊形ABCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當n=0時,菱形ABCD的面積取得最大值43.31.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結(jié)構特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺組成。球的半徑為1,圓臺的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺=46πcm2。32.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()
A.2
B.3
C.4
D.5答案:C33.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認為正確嗎?
(2)不管猜想是否正確,這個結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請用數(shù)學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學歸納法證明:①n=1時,結(jié)論成立;②假設n=k時,結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立34.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設正三角形的標出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2435.設點P(t2+2t,1)(t>0),則|OP|(O為坐標原點)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當t=2時取得等號.故選D.36.設一次試驗成功的概率為p,進行100次獨立重復試驗,當p=______時,成功次數(shù)的標準差的值最大,其最大值為______.答案:由獨立重復試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;537.已知=(1,2),=(-3,2),k+與-3垂直時,k的值為(
)
A.17
B.18
C.19
D.20答案:C38.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因為曲線x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).39.(理)
設O為坐標原點,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點Q在直線OP上運動,則當QA?QB取得最小值時,點Q的坐標為______.答案:∵OP=(1,1,2),點Q在直線OP上運動,設OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當λ=43時,QA?QB取得最小值.此時Q的坐標為(43,43,83)故為:(43,43,83)40.在平面直角坐標系xOy中,設F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關于x軸、y軸、坐標原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤41.用黃金分割法尋找最佳點,試驗區(qū)間為[1000,2000],若第一個二個試點為好點,則第三個試點應選在(
)。答案:123642.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()
A.大前提錯導致結(jié)論錯
B.小前提錯導致結(jié)論錯
C.推理形式錯導致結(jié)論錯
D.大前提和小前提錯都導致結(jié)論錯答案:A43.對任意實數(shù)x,y,定義運算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運算為通常的實數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個非零實數(shù)m,使得對于任意的實數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A44.(選做題)參數(shù)方程中當t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=145.已知P是以F1,F(xiàn)2為焦點的橢圓(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()
A.
B.
C.
D.答案:D46.如圖,O是正方形ABCD對角線的交點,四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫出與AO共線的向量有
______;
(3)寫出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等47.六個不同大小的數(shù)按如圖形式隨機排列,設第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設這六個數(shù)分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.48.如右圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41
C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41
C12
C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.49.在平面直角坐標系內(nèi)第二象限的點組成的集合為______.答案:∵平面直角坐標系內(nèi)第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內(nèi)第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.50.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當n=1時,不等式左端=1,右端=2,所以不等式成立;(2)假設n=k(k≥1)時,不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當n=k+1時,不等式也成立.綜合(1)、(2)得:當n∈N*時,都有1+12+13+…+1n<2n.證法二:設f(n)=2n-(1+12+13+…+1n),那么對任意k∈N*
都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對任意n∈N*
都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.第3卷一.綜合題(共50題)1.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.2.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.3.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進行測試,設第X次首次測到正品,則P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B4.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A5.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(
)
A.
B.
C.
D.答案:D6.某校有學生1
200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.7.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個等式兩邊分別平方,再相加,即可消去含θ的項,所以有(x-1)2+y2=4.8.某幾何體的三視圖如圖所示,則這個幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.9.命題“每一個素數(shù)都是奇數(shù)”的否定是______.答案:原命題“每一個素數(shù)都是奇數(shù)”是一個全稱命題它的否定是一個特稱命題,即“有的素數(shù)不是奇數(shù)”故為:有的素數(shù)不是奇數(shù)10.對某種電子元件進行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C11.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個余弦值為1225故為122512.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),∴a12=12,?a=14.故選D.13.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個人中選出2個人當代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.14.某廠2011年的產(chǎn)值為a萬元,預計產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.15.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C16.若a>0,b>0,則不等式-b<aA.<x<0或0<x<
答案:D解析:試題分析:17.解下列關于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集為解析:(1)
解:(2)
解:分析該題要設法去掉絕對值符號,可由去分類討論當時原不等式等價于
故得不等式的解集為所以原不等式的解集為18.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1419.用0、1、2、3、4、5這6個數(shù)字,可以組成無重復數(shù)字的五位偶數(shù)的個數(shù)為______(用數(shù)字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31220.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C21.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設其交點為M.
(I)證明FM.AB為定值;
(II)設△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.22.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形23.已知|log12x+4i|≥5,則實數(shù)x
的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x
的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.24.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1325.關于生活中的圓錐曲線,有下面幾個結(jié)論:
(1)標準田徑運動場的內(nèi)道是一個橢圓;
(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線;
(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線;
(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.
其中正確命題的序號是______(把你認為正確命題的序號都填上).答案:(1)標準田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)26.在平面直角坐標系xOy中,點P(x,y)是橢圓x23+y2=1上的一個動點,求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設動點P的坐標為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當?=π6時,S取最大值2.27.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:
①至少有1個白球與至少有1個黃球;
②至少有1個黃球與都是黃球;
③恰有1個白球與恰有1個黃球.
其中互斥而不對立的事件共有()組.
A.0
B.1
C.2
D.3答案:A28.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設p(x0,y0)設AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過點(x0+2,-y0)29.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.30.已知離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過點P(3,1).
(1)求橢圓C的方程;
(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若OM?ON=463tan∠MON(O為坐標原點),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過點P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點為F1(-2,0),則直線l的方程可設為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版音樂六年級上冊教學計劃特色課程設計
- 修訂版中央空調(diào)系統(tǒng)工程承包合同(2024)版B版
- 二零二五年度新型建筑門窗安裝與施工合同范本4篇
- 2025年度存量房買賣廣告設計與制作合同3篇
- 二零二四年度體育賽事贊助合作合同范本3篇
- 2025年度化工儲罐租賃及環(huán)保治理服務合同3篇
- 2025年度智能設備購銷及物流配送一體化合同
- 2025年度國際貿(mào)易實務五合同標的國際貨物保險合同
- 二零二五年度場大廳藝術品攤位租賃及文化推廣合同3篇
- 2025年度住宅購房居間服務合同書
- 2025年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
- 商務部發(fā)布《中國再生資源回收行業(yè)發(fā)展報告(2024)》
- 2025年福建新華發(fā)行(集團)限責任公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 江蘇省駕??荚嚳颇恳豢荚囶}庫
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學2023-2024學年七上期末數(shù)學試題(解析版)
- 咨詢公司績效工資分配實施方案
- 2025新人教版英語七年級下單詞表
- 中華護理學會團體標準-氣管切開非機械通氣患者氣道護理
- 未成年入職免責協(xié)議書
- 光伏電站巡檢專項方案
- 2024年山東省東營市中考數(shù)學試題 (原卷版)
評論
0/150
提交評論