2022屆上海曹楊二中高考沖刺數(shù)學(xué)模擬試題含解析_第1頁(yè)
2022屆上海曹楊二中高考沖刺數(shù)學(xué)模擬試題含解析_第2頁(yè)
2022屆上海曹楊二中高考沖刺數(shù)學(xué)模擬試題含解析_第3頁(yè)
2022屆上海曹楊二中高考沖刺數(shù)學(xué)模擬試題含解析_第4頁(yè)
2022屆上海曹楊二中高考沖刺數(shù)學(xué)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無(wú)最小值 B.有最大值,有最小值C.無(wú)最大值,有最小值 D.無(wú)最大值,無(wú)最小值2.已知,則不等式的解集是()A. B. C. D.3.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.4.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長(zhǎng)棱的長(zhǎng)度為()A. B. C. D.5.函數(shù)的部分圖像如圖所示,若,點(diǎn)的坐標(biāo)為,若將函數(shù)向右平移個(gè)單位后函數(shù)圖像關(guān)于軸對(duì)稱,則的最小值為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.7.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.8.已知,則的大小關(guān)系為()A. B. C. D.9.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.10.若變量,滿足,則的最大值為()A.3 B.2 C. D.1011.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,12.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號(hào)為()A.③④ B.①② C.①③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.15.在編號(hào)為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機(jī)抽取其中的三張,則抽取的三張卡片編號(hào)之和是偶數(shù)的概率為________.16.已知函數(shù),對(duì)于任意都有,則的值為______________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長(zhǎng)為2的正三角形,,為線段的中點(diǎn).(1)求證:平面平面;(2)若為線段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.18.(12分)某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過(guò)日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值.19.(12分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過(guò)點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時(shí)直線的方程.20.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.22.(10分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過(guò)程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問(wèn)題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.2.A【解析】

構(gòu)造函數(shù),通過(guò)分析的單調(diào)性和對(duì)稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對(duì)稱,所以圖像關(guān)于對(duì)稱.不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱性解不等式,屬于中檔題.3.D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.4.C【解析】

利用正方體將三視圖還原,觀察可得最長(zhǎng)棱為AD,算出長(zhǎng)度.【詳解】幾何體的直觀圖如圖所示,易得最長(zhǎng)的棱長(zhǎng)為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問(wèn)題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.5.B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過(guò)平移變換函數(shù)圖象關(guān)于軸對(duì)稱,求得的最小值.【詳解】由于,函數(shù)最高點(diǎn)與最低點(diǎn)的高度差為,所以函數(shù)的半個(gè)周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個(gè)單位后函數(shù)圖像關(guān)于軸對(duì)稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點(diǎn)睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡(jiǎn)單題目.6.B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.7.D【解析】

根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個(gè)選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.8.A【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對(duì)數(shù)函數(shù)的單調(diào)性,將與對(duì)比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對(duì)比,屬于基礎(chǔ)題..9.C【解析】

先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過(guò)分裂參數(shù)法和構(gòu)造新函數(shù),通過(guò)利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來(lái)求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.10.D【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.11.D【解析】

根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.12.B【解析】

由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對(duì)每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.14.【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長(zhǎng)為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對(duì)幾何體的正確認(rèn)識(shí),能通過(guò)題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15.【解析】

先求出所有的基本事件個(gè)數(shù),再求出“抽取的三張卡片編號(hào)之和是偶數(shù)”這一事件包含的基本事件個(gè)數(shù),利用古典概型的概率計(jì)算公式即可算出結(jié)果.【詳解】一次隨機(jī)抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個(gè),其中“抽取的三張卡片編號(hào)之和是偶數(shù)”包含6個(gè)基本事件,因此“抽取的三張卡片編號(hào)之和是偶數(shù)”的概率為:.故答案為:.【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,屬于基礎(chǔ)題.16.【解析】

由條件得到函數(shù)的對(duì)稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對(duì)稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對(duì)稱性,注意對(duì)稱軸必過(guò)最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2).【解析】

(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)?,所以是正三角形,所以,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.?)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系.則.于是,,.設(shè)面的一個(gè)法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個(gè)法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點(diǎn)睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識(shí)點(diǎn),考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1)(2)①生產(chǎn)線上挽回的損失較多.②見(jiàn)解析【解析】

(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項(xiàng)分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤(rùn)的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計(jì)總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值為(元)【點(diǎn)睛】本題主要考查概率公式的應(yīng)用,二項(xiàng)分布的性質(zhì)與方差的求解,離散型隨機(jī)變量及其分布列的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19.(Ⅰ);(Ⅱ)面積的最大值為,此時(shí)直線的方程為.【解析】

(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點(diǎn)到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點(diǎn)的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點(diǎn),,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,因此面積的最大值為,此時(shí)直線的方程為.【點(diǎn)睛】常見(jiàn)的利用定義法求解曲線的軌跡方程問(wèn)題:(1)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是橢圓;(2)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是雙曲線.20.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對(duì)值不等式的性質(zhì)可得,不等式對(duì)任意實(shí)數(shù)恒成立,等價(jià)于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時(shí),即,①當(dāng)時(shí),得,所以;②當(dāng)時(shí),得,即,所以;③

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論