版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.52.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)3.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.4.已知函數,其中,記函數滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.6.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數超過102C.四個月的數據顯示北京市的居民消費價格指數增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數的增長呈上升趨勢7.若函數有且僅有一個零點,則實數的值為()A. B. C. D.8.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.9.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.10.已知全集,集合,,則()A. B. C. D.11.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.12.洛書,古稱龜書,是陰陽五行術數之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數,四角黑點為陰數.如圖,若從四個陰數和五個陽數中分別隨機選取1個數,則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則____________.14.設實數x,y滿足,則點表示的區(qū)域面積為______.15.已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標原點),則C的離心率為________.16.在二項式的展開式中,的系數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數,其中是自然對數的底數.(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數與函數的圖象交于,且線段的中點為,證明:.18.(12分)已知函數.(1)求函數f(x)的最小正周期;(2)求在上的最大值和最小值.19.(12分)已知函數.(1)求不等式的解集;(2)若不等式在上恒成立,求實數的取值范圍.20.(12分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.21.(12分)設函數f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)已知函數,且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.2.D【解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.3.C【解析】
根據三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.4.D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5.C【解析】
框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.6.D【解析】
采用逐一驗證法,根據圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.7.D【解析】
推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.8.A【解析】
根據指數型函數所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數型函數的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.9.C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.10.B【解析】
直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.【點睛】本題考查集合的基本運算,屬于基礎題.11.C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.12.A【解析】
基本事件總數,利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數和五個陽數中分別隨機選取1個數,基本事件總數,其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由于,,則.14.【解析】
先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.15.2【解析】
求出焦點到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點睛】本題考查求雙曲線的離心率,解題關鍵是求出焦點到漸近線的距離,從而得出一個關于的等式.16.60【解析】
直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數為.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數研究的單調性、極值,從而得到參數的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調遞減,且當時,單調遞增;當時,單調遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設,即證:要證,只需證:令,則在上為增函數,即成立;要證,只需證明:令,則在上為減函數,,即成立成立,所以成立.【點睛】本題考查利用導數研究函數的單調性、極值,利用導數證明不等式,屬于難題;18.(1);(2)見解析【解析】
將函數解析式化簡即可求出函數的最小正周期根據正弦函數的圖象和性質即可求出函數在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當,即時,;當,即時,.綜上,得時,取得最小值為0;當時,取得最大值為.【點睛】本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數的性質等,較為綜合,也是??碱}型,需要計算正確,屬于基礎題19.(1);(2)【解析】
(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數與的最小值,根據能同時成立,可得的最小值,即可求解.【詳解】(1)①當時,不等式可化為,得,無解;②當-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數的最值,屬于中檔題.20.(Ⅰ)(Ⅱ)函數的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數間的基本關系求出及的值,再代入中即可得到結果.(2)函數解析式利用二倍角和輔助角公式將化為一個角的正弦函數,根據的范圍,即可得到函數值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數的定義域為.化簡,得,因為,且,,所以,所以.所以函數的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數的基本關系式,三角函數函數值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于??碱}型.21.(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《綜合布線結構圖》課件
- 小學數學一年級上冊 三1-5的認識和加減法 第四節(jié) 幾和幾 教案
- 湖南省株洲市2025屆高三上學期教學質量統(tǒng)一檢測化學答案
- 高考新課標語文模擬試卷系列之60
- 《辦公室的設計》課件
- 娛樂服務員工作總結
- 駕駛培訓車輛租賃合同三篇
- 服裝行業(yè)采購經驗分享
- 教育行業(yè)校園安全預案編制
- 信息安全行業(yè)技術崗位總結
- 中國普通食物營養(yǎng)成分表(修正版)
- 駕駛證學法減分(學法免分)試題和答案(50題完整版)1650
- 期末測試卷(試題)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 【人民日報】72則金句期末評語模板-每頁4張
- (正式版)JTT 1497-2024 公路橋梁塔柱施工平臺及通道安全技術要求
- 《Something Just Like This》歌詞
- 人民網刪除稿件(帖文)申請登記表
- 橋梁加固、拼寬流程圖(共9頁)
- 小組合作學習學生評價量表
- 新錄用公務員服務協(xié)議書
- OQC崗位職責(完整版)
評論
0/150
提交評論