版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年蘇州幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.通過(guò)隨機(jī)詢問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男女總計(jì)愛(ài)好402060不愛(ài)好203050總計(jì)6050110為了判斷愛(ài)好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因?yàn)镻(k2≥6.635)≈0.01,所以判定愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān),那么這種判斷出錯(cuò)的可能性為_(kāi)_____.答案:由題意知本題所給的觀測(cè)值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個(gè)結(jié)論有0.01=1%的機(jī)會(huì)說(shuō)錯(cuò),故為:1%2.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8,高為4的等腰三角形,左視圖是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.則該幾何體的體積為_(kāi)_____.答案:由題意幾何體復(fù)原是一個(gè)底面邊長(zhǎng)為8,6的距離,高為4,且頂點(diǎn)在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.3.關(guān)于斜二測(cè)畫(huà)法畫(huà)直觀圖說(shuō)法不正確的是()
A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同
B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸
C.平行于坐標(biāo)軸的線段長(zhǎng)度在直觀圖中仍然保持不變
D.斜二測(cè)坐標(biāo)系取的角可能是135°答案:C4.如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),則f(x)在其相鄰兩個(gè)零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為_(kāi)_____.答案:作出點(diǎn)A的軌跡中相鄰兩個(gè)零點(diǎn)間的圖象,如圖所示.其軌跡為兩段圓弧,一段是以C為圓心,CA為半徑的四分之一圓弧;一段是以B為圓心,BA為半徑,圓心角為3π4的圓?。渑cx軸圍成的圖形的面積為12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故為:2+4π.5.在(1+2x)5的展開(kāi)式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.6.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.7.若集合A={1,2,3},則集合A的真子集共有()A.3個(gè)B.5個(gè)C.7個(gè)D.8個(gè)答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選C.8.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.9.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則動(dòng)點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對(duì)于在平面內(nèi),若動(dòng)點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動(dòng)點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.10.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有
A.a(chǎn)<0
B.a(chǎn)>0
C.a(chǎn)<-1
D.a(chǎn)>1答案:A11.某校高一年級(jí)8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個(gè),按照從小到大的順序?yàn)椋?7,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.512.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3413.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.14.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C15.某人射擊一次擊中的概率為0.6,經(jīng)過(guò)3次射擊,此人至少有兩次擊中目標(biāo)的概率為()
A.
B.
C.
D.答案:A16.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長(zhǎng)度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)17.已知
p:所有國(guó)產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()
A.所有國(guó)產(chǎn)手機(jī)都沒(méi)有陷阱消費(fèi)
B.有一部國(guó)產(chǎn)手機(jī)有陷阱消費(fèi)
C.有一部國(guó)產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)
D.國(guó)外產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)答案:C18.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為_(kāi)_____.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.19.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.20.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域?yàn)?16≤x≤14,即:[116,14].故選C.21.如圖,平面內(nèi)有三個(gè)向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μO(píng)B(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μO(píng)B,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.22.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C23.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.24.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過(guò)點(diǎn)P且平行于極軸的直線的方程是()
A.ρsinθ=1
B.ρsinθ=
C.ρcosθ=1
D.ρcosθ=答案:A25.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)26.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.27.已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長(zhǎng)|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長(zhǎng)為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過(guò)點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.28.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線相交于M,N兩點(diǎn),自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C29.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.30.在空間直角坐標(biāo)系中,已知點(diǎn)P(a,0,0),Q(4,1,2),且|PQ|=,則a=()
A.1
B.-1
C.-1或9
D.1或9答案:C31.已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過(guò)點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.
(ⅰ)求證:直線AB恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過(guò)點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過(guò)E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過(guò)定點(diǎn)(0,2)(10分)(ⅱ)由(?。┲狝B中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)32.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時(shí),由已知得原式成立;(2)假設(shè)當(dāng)n=k時(shí),原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時(shí),原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.33.拋物線y=ax2(其中a>0)的焦點(diǎn)坐標(biāo)是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D34.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.35.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過(guò)點(diǎn)M(2,1),則此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過(guò)四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無(wú)理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).36.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對(duì)邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.37.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為_(kāi)_____.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11438.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2339.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()
A.
B.0
C.
D.0或答案:D40.若直線l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(
)
A.點(diǎn)在圓上
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓外
D.不能確定答案:C41.(選做題)已知矩陣.122x.的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.答案:矩陣M的特征多項(xiàng)式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因?yàn)棣?=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對(duì)應(yīng)的一個(gè)特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個(gè)特征值為-1,對(duì)應(yīng)的一個(gè)特征向量為α=1-1…(10分)42.判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯(cuò)誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域?yàn)镽,g(x)的定義域?yàn)椋簕x|x≥0},故D錯(cuò)誤;故選B.43.選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個(gè)等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π44.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果對(duì)于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個(gè)函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為
2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對(duì)應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無(wú)窮多個(gè),②錯(cuò)誤③y=lgx在(0,+∞)單調(diào)遞增,對(duì)應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時(shí)x2不存在④錯(cuò)誤故選D.45.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()
A.24
B.48
C.144
D.288答案:C46.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).47.若e1、e2、e3是三個(gè)不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請(qǐng)說(shuō)明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.48.圓x2+y2=1在矩陣10012對(duì)應(yīng)的變換作用下的結(jié)果為_(kāi)_____.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.49.如果如圖所示的程序中運(yùn)行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為_(kāi)_____.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1150.經(jīng)過(guò)原點(diǎn),圓心在x軸的負(fù)半軸上,半徑等于2的圓的方程是______.答案:∵圓過(guò)原點(diǎn),圓心在x軸的負(fù)半軸上,∴圓心的橫坐標(biāo)的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標(biāo)為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=2第2卷一.綜合題(共50題)1.若點(diǎn)(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實(shí)數(shù)a的取值范圍是()
A.-2<a<2
B.0<a<2
C.a(chǎn)<-2或a>2
D.a(chǎn)=±2答案:A2.有3名同學(xué)要爭(zhēng)奪2個(gè)比賽項(xiàng)目的冠軍,冠軍獲得者共有______種可能.答案:第一個(gè)項(xiàng)目的冠軍有3種情況,第二個(gè)項(xiàng)目的冠軍也有3種情況,根據(jù)分步計(jì)數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.3.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.4.下列關(guān)于算法的說(shuō)法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問(wèn)題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因?yàn)樗惴ň哂杏懈F性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問(wèn)題的算法不一定唯一,例如求排序問(wèn)題算法就不唯一,所以,給出的說(shuō)法不正確的是B.故選B.5.一直線傾斜角的正切值為34,且過(guò)點(diǎn)P(1,2),則直線方程為_(kāi)_____.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過(guò)點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.6.雙曲線的漸進(jìn)線方程是3x±4y=0,則雙曲線的離心率等于______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.7.對(duì)變量x,y
有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v
有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說(shuō)法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B8.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過(guò)點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長(zhǎng)定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.9.底面直徑和高都是4cm的圓柱的側(cè)面積為_(kāi)_____cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長(zhǎng)是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.10.在測(cè)量某物理量的過(guò)程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…,an,共n個(gè)數(shù)據(jù).我們規(guī)定所測(cè)量的“量佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測(cè)量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann11.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為_(kāi)_____.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.12.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)為_(kāi)_____.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.13.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.14.如圖,以1×3方格紙中的格點(diǎn)為起點(diǎn)和終點(diǎn)的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個(gè)模,進(jìn)而分析方向,正方形的邊對(duì)應(yīng)的向量共有四個(gè)方向,邊長(zhǎng)為1的正方形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×2的矩形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×3的矩形對(duì)角線對(duì)應(yīng)的向量共有四個(gè)方向共有16個(gè)方向15.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時(shí),一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.16.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立.現(xiàn)已知當(dāng)n=5時(shí),該命題不成立,那么可推得()
A.當(dāng)n=6時(shí),該命題不成立
B.當(dāng)n=6時(shí),該命題成立
C.當(dāng)n=4時(shí),該命題不成立
D.當(dāng)n=4時(shí),該命題成立答案:C17.給定兩個(gè)長(zhǎng)度為1且互相垂直的平面向量OA和OB,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng).若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5218.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.19.若某簡(jiǎn)單組合體的三視圖(單位:cm)如圖所示,說(shuō)出它的幾何結(jié)構(gòu)特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺(tái)組成。球的半徑為1,圓臺(tái)的上下底面半徑分別為1、4,高為4,母線長(zhǎng)為5,S球=4πcm2,S臺(tái)=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺(tái)=46πcm2。20.8的值為()
A.2
B.4
C.6
D.8答案:B21.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B22.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為_(kāi)_____.答案:由題意得,當(dāng)x=1時(shí),g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時(shí),g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}23.若向量、、滿足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C24.證明:已知a與b均為有理數(shù),且a和b都是無(wú)理數(shù),證明a+b也是無(wú)理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無(wú)理數(shù)25.______稱為向量的長(zhǎng)度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,稱為向量AB的長(zhǎng)度(或成為模),記作|AB|;長(zhǎng)度為零的向量稱為零向量,記作0;長(zhǎng)度等于1個(gè)單位的向量稱為單位向量.故為:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,|AB|;長(zhǎng)度為零的向量,0;長(zhǎng)度等于1個(gè)單位的向量.26.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.27.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長(zhǎng).答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長(zhǎng)為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.28.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.29.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為_(kāi)_____.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).30.已知在一場(chǎng)比賽中,甲運(yùn)動(dòng)員贏乙、丙的概率分別為0.8,0.7,比賽沒(méi)有平局.若甲分別與乙、丙各進(jìn)行一場(chǎng)比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3831.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個(gè)
B.36個(gè)
C.100個(gè)
D.225個(gè)答案:D32.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.33.在甲、乙兩個(gè)盒子里分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)小球,現(xiàn)從甲、乙兩個(gè)盒子里各取出1個(gè)小球,每個(gè)小球被取出的可能性相等.
(1)求取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率;
(3)求取出的兩個(gè)小球上標(biāo)號(hào)之和大于5整除的概率.答案:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=38;(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為516;(3)其中取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的概率P=3834.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).35.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個(gè)根為1+i(i是虛數(shù)單位),則p+q的值是()
A.-1
B.0
C.2
D.-2答案:B36.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()
A.30°
B.60°
C.90°
D.120°答案:A37.數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時(shí),第一步驗(yàn)證的表達(dá)式為_(kāi)_____.答案:根據(jù)數(shù)學(xué)歸納法的步驟,首先要驗(yàn)證證明當(dāng)n取第一個(gè)值時(shí)命題成立;結(jié)合本題,要驗(yàn)證n=1時(shí),2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對(duì)).38.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測(cè),這種抽樣方法是()
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B39.用數(shù)學(xué)歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當(dāng)n=1時(shí),左端為_(kāi)_____.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當(dāng)n=1時(shí),3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時(shí),等式左端=1×4=4故為:4.40.已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因?yàn)槿晥D復(fù)原的幾何體是正四棱錐,底面邊長(zhǎng)為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.41.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A42.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C43.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i44.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為_(kāi)_____.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:545.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰三角形,腰AB=AC=1,如圖,則平面圖形的實(shí)際面積為()
A.1
B.2
C.
D.
答案:A46.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1347.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1048.一個(gè)口袋中有紅球3個(gè),白球4個(gè).
(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;
(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎(jiǎng)“即為“第一次摸到的2個(gè)白球,第二次至少有1個(gè)紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎(jiǎng)的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.49.來(lái)自中國(guó)、英國(guó)、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來(lái)自不同國(guó)家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B50.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D第3卷一.綜合題(共50題)1.在某項(xiàng)體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:
90
89
90
95
93
94
93
去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B2.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.3.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說(shuō)法正確的是()
A.l1和l2必定平行
B.l1與l2必定重合
C.l1和l2有交點(diǎn)(s,t)
D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C4.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()
A.40
B.30
C.20
D.12答案:A5.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A6.在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個(gè)程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實(shí)施時(shí)必須相鄰,請(qǐng)問(wèn)實(shí)驗(yàn)順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C7.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.8.若向量{}是空間的一個(gè)基底,則一定可以與向量構(gòu)成空間的另一個(gè)基底的向量是()
A.
B.
C.
D.答案:C9.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當(dāng)A1B1=A2B2
時(shí),兩直線可能平行,也可能重合,故充分性不成立.當(dāng)l1∥l2時(shí),B1與B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.10.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時(shí),左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時(shí),等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時(shí),左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時(shí),等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對(duì)任意正整數(shù)都成立.11.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.12.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A13.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說(shuō)法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.14.系數(shù)矩陣為.2132.,解為xy=12的一個(gè)線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.15.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對(duì)稱點(diǎn),則|AB|=()
A.10
B.
C.
D.38答案:A16.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大??;
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長(zhǎng)DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)17.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()
A.35
B.25
C.15
D.7答案:C18.下列各圖象中,哪一個(gè)不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個(gè)輸入值對(duì)應(yīng)唯一輸出值的一種對(duì)應(yīng)關(guān)系.選項(xiàng)D,對(duì)于x=1時(shí)有兩個(gè)輸出值與之對(duì)應(yīng),故不是函數(shù)圖象故選D.19.定義集合運(yùn)算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當(dāng)x=0時(shí),z=0,當(dāng)x=1,y=2時(shí),z=6,當(dāng)x=1,y=3時(shí),z=12,故所有元素之和為18,故選D20.若k∈R,則“k>3”是“方程表示雙曲線”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:A21.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.22.在極坐標(biāo)系中,點(diǎn)A(2,π2)關(guān)于直線l:ρcosθ=1的對(duì)稱點(diǎn)的一個(gè)極坐標(biāo)為_(kāi)_____.答案:在直角坐標(biāo)系中,A(0,2),直線l:x=1,A關(guān)于直線l的對(duì)稱點(diǎn)B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點(diǎn)B在第一象限,故B的極坐標(biāo)為(22,π4),故為
(22,π4).23.按ABO血型系統(tǒng)學(xué)說(shuō),每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D24.下列說(shuō)法中正確的有()
①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.25.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿足xn<xn+1,或者對(duì)任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+126.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長(zhǎng)P、PF、PG、PH交對(duì)邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.27.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線經(jīng)過(guò)點(diǎn)(4,2),則它的離心率為()
A.
B.
C.
D.答案:D28.將4封不同的信隨機(jī)地投入到3個(gè)信箱里,記有信的信箱個(gè)數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是29.在下面的圖示中,結(jié)構(gòu)圖是()
A.
B.
C.
D.
答案:B30.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而B(niǎo)C與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)31.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c32.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.33.根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車.據(jù)有關(guān)報(bào)道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對(duì)這500人血液中酒精含量進(jìn)行檢測(cè)所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車,通過(guò)頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.34.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貿(mào)易融資擔(dān)保合同模板
- 網(wǎng)絡(luò)直播服務(wù)合同
- 納稅質(zhì)押協(xié)議
- 公益性崗位合同書(shū)
- 管樁工程施工組織設(shè)計(jì)方案
- 政府采購(gòu)語(yǔ)言培訓(xùn)服務(wù)合同
- 項(xiàng)目設(shè)計(jì)合作合同
- 大數(shù)據(jù)分析合同
- 收藏品代購(gòu)協(xié)議模板
- 防水砌墻工程合同
- 藥學(xué)服務(wù)指導(dǎo)案例
- 物業(yè)有償服務(wù)方案
- 小學(xué)數(shù)學(xué)學(xué)困生轉(zhuǎn)化案例
- 新人教版小學(xué)四年級(jí)上冊(cè)道德與法治教案(第一、第二單元)
- 籃球培訓(xùn)報(bào)告
- 蘋(píng)果公司的供應(yīng)鏈合作伙伴關(guān)系課件
- 暴雨洪災(zāi)應(yīng)急預(yù)案知識(shí)
- 林業(yè)政策與法律法規(guī)
- 快遞道路安全培訓(xùn)
- 長(zhǎng)沙找工作分析報(bào)告
- 甘肅慶陽(yáng)家鄉(xiāng)介紹課件
評(píng)論
0/150
提交評(píng)論