2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年大興安嶺職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.2.已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過(guò)球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個(gè)圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯(cuò)誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過(guò)球心的截面如(1)圖所示;(2)過(guò)三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過(guò)三棱錐的一個(gè)頂點(diǎn)(不過(guò)棱)和球心所得截面如(3)圖所示;(4)棱長(zhǎng)都相等的正三棱錐和球心不可能在同一個(gè)面上,所以(4)是錯(cuò)誤的.故選C.3.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C4.某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動(dòng)員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.5.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為_(kāi)_____.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:226.下列各式中錯(cuò)誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C7.如圖,圓周上按順時(shí)針?lè)较驑?biāo)有1,2,3,4,5五個(gè)點(diǎn).一只青蛙按順時(shí)針?lè)较蚶@圓從一個(gè)點(diǎn)跳到另一個(gè)點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn).該青蛙從“5”這點(diǎn)起跳,經(jīng)2

011次跳后它停在的點(diǎn)對(duì)應(yīng)的數(shù)字是______.答案:起始點(diǎn)為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點(diǎn)是1.故為18.某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘分裂一次(一個(gè)分裂為兩個(gè)).經(jīng)過(guò)3個(gè)小時(shí),這種細(xì)菌由1個(gè)可繁殖成()

A.511個(gè)

B.512個(gè)

C.1023個(gè)

D.1024個(gè)答案:B9.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.10.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:11.若直線l經(jīng)過(guò)原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B12.若a>0,b>0,2a+3b=1,則ab的最大值為_(kāi)_____.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12413.用秦九韶算法求多項(xiàng)式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時(shí)的值.答案:根據(jù)秦九韶算法,把多項(xiàng)式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時(shí),多項(xiàng)式的值為1397.14.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實(shí)數(shù)m=______.答案:把AB、AC平移,使得點(diǎn)A與原點(diǎn)重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時(shí),AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時(shí),AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時(shí),AC?BC=0,即2+m2-m=0,此方程無(wú)解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或015.若拋物線y2=2px(p>0)的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為()

A.2

B.4

C.8

D.4答案:C16.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且

則滿足條件的函數(shù)f(x)有()

A.6個(gè)

B.10個(gè)

C.12個(gè)

D.16個(gè)答案:C17.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B18.如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見(jiàn)小島B在北偏東75°,航行8海里到達(dá)C處,望見(jiàn)小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問(wèn)此艦有沒(méi)有觸礁的危險(xiǎn)?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過(guò)B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒(méi)有危險(xiǎn).19.等于()

A.a(chǎn)

B.a(chǎn)2

C.a(chǎn)3

D.a(chǎn)4答案:B20.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.21.(幾何證明選做題)若A,B,C是⊙O上三點(diǎn),PC切⊙O于點(diǎn)C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為_(kāi)_____.答案:∵PC切⊙O于點(diǎn)C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°22.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()

A.P>Q

B.P=Q

C.P<Q

D.由a的取值確定答案:C23.已知命題p:“有的實(shí)數(shù)沒(méi)有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒(méi)有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.24.△ABC是邊長(zhǎng)為1的正三角形,那么△ABC的斜二測(cè)平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D25.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x26.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒(méi)有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.27.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A28.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.29.點(diǎn)M的直角坐標(biāo)為(,1,-2),則它的柱坐標(biāo)為()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C30.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()

A.

B.

C.

D.

答案:A31.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D32.口袋中裝有三個(gè)編號(hào)分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號(hào)后放回,連續(xù)取球兩次.則“兩次取球中有3號(hào)球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號(hào)球的概率為13,則兩次取得球都是3號(hào)求得概率為C22?(13)2=19,兩次取得球只有一次取得3號(hào)求得概率為C12?13?23=49,故“兩次取球中有3號(hào)球”的概率為19+49=59,故選A.33.下列說(shuō)法正確的是()

A.向量

與向量是共線向量,則A、B、C、D必在同一直線上

B.向量與平行,則與的方向相同或相反

C.向量的長(zhǎng)度與向量的長(zhǎng)度相等

D.單位向量都相等答案:C34.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B35.(文)若拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合,則實(shí)數(shù)p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點(diǎn)坐標(biāo)為(2,0)∵拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合∴拋物線y2=2px中p=4故為436.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,

(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒(méi)有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種37.把38化為二進(jìn)制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗(yàn)證所給的四個(gè)選項(xiàng),在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過(guò)驗(yàn)證知道,B中的二進(jìn)制表示的數(shù)字換成十進(jìn)制以后得到38,故選B.38.某射擊運(yùn)動(dòng)員在四次射擊中分別打出了9,x,10,8環(huán)的成績(jī),已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1239.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3440.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.41.寫出系數(shù)矩陣為1221,且解為xy=11的一個(gè)線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個(gè)線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.42.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當(dāng)n=1時(shí),不等式左端=1,右端=2,所以不等式成立;(2)假設(shè)n=k(k≥1)時(shí),不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當(dāng)n=k+1時(shí),不等式也成立.綜合(1)、(2)得:當(dāng)n∈N*時(shí),都有1+12+13+…+1n<2n.證法二:設(shè)f(n)=2n-(1+12+13+…+1n),那么對(duì)任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對(duì)任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.43.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C44.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需

即只需由條件,顯然成立.∴原不等式成立45.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長(zhǎng)的三角形是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.不能確定答案:B46.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)47.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B48.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2349.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.50.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心故選A.第2卷一.綜合題(共50題)1.設(shè)F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()

A.2

B.2

C.4

D.8答案:A2.各項(xiàng)都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)證明1a1+1a2+…+1an≤2n-1對(duì)一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項(xiàng)為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤

2n-1.1當(dāng)n=1時(shí),左邊=1,右邊=1,所以命題成立.當(dāng)n=2時(shí),左邊<右邊,所以命題成立②假設(shè)n=k時(shí)命題成立,即1+13+…+12k-1≤2k-1,當(dāng)n=k+1時(shí),左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)

2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對(duì)一切n∈N+恒成立.3.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)為_(kāi)_____.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.4.已知兩定點(diǎn)F1(5,0),F(xiàn)2(-5,0),曲線C上的點(diǎn)P到F1、F2的距離之差的絕對(duì)值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點(diǎn),以實(shí)軸長(zhǎng)為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B5.若正四面體ABCD的棱長(zhǎng)為1,M是AB的中點(diǎn),則MC

?MD

=______.答案:在正四面體中,因?yàn)镸是AB的中點(diǎn),所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC

?MD

=CM?DM=14.故為:

1

4

.6.圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A7.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(I)求圓C的參數(shù)方程;

(II)設(shè)圓C與直線l交于點(diǎn)A,B,求弦長(zhǎng)|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圓C的直角坐標(biāo)方程為x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圓C的參數(shù)方程為x=5cosθy=5+5sinθ(θ為參數(shù))

…(4分)(Ⅱ)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)設(shè)兩交點(diǎn)A,B所對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)8.已知拋物線方程為y2=2px(p>0),過(guò)該拋物線焦點(diǎn)F且不與x軸垂直的直線AB交拋物線于A,B兩點(diǎn),過(guò)點(diǎn)A,點(diǎn)B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點(diǎn),那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B9.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.10.①附中高一年級(jí)聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個(gè)集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級(jí)聰明的學(xué)生,不是確定的,原因是沒(méi)法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒(méi)說(shuō)明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.11.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B12.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為_(kāi)_____.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.13.螺母是由

______和

______兩個(gè)簡(jiǎn)單幾何體構(gòu)成的.答案:根據(jù)螺母的結(jié)構(gòu)特征知,是由正六棱柱里面挖去的一個(gè)圓柱構(gòu)成的,故為:正六棱柱,圓柱.14.命題“正數(shù)的絕對(duì)值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對(duì)值等于它本身”改寫為“若一個(gè)數(shù)是正數(shù),則其絕對(duì)值等于它本身”,所以逆命題是“若一個(gè)數(shù)的絕對(duì)值等于它本身,則這個(gè)數(shù)是正數(shù)”,即“絕對(duì)值等于它本身的數(shù)是正數(shù)”.故為:“絕對(duì)值等于它本身的數(shù)是正數(shù)”.15.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對(duì)于f(x)定義域內(nèi)的任意一個(gè)自變量x1都存在唯一個(gè)個(gè)自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號(hào)是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時(shí),lnx沒(méi)有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個(gè)自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當(dāng)x=2kπ+π2時(shí),函數(shù)沒(méi)有倒數(shù),不成立.所以成立的函數(shù)序號(hào)為③故為③16.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C17.拋物線y=14x2的焦點(diǎn)坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點(diǎn)坐標(biāo)是(0,1),故為(0,1).18.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯(cuò)誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯(cuò)誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.19.每一噸鑄鐵成本y

(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說(shuō)法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個(gè)單位時(shí),對(duì)應(yīng)的y要增加8個(gè)單位,這里是平均增加8個(gè)單位,故選C.20.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過(guò)經(jīng)驗(yàn)公式樣S=ab+cd+1e來(lái)計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過(guò)程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.21.若命題P(n)對(duì)n=k成立,則它對(duì)n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()

A.P(n)對(duì)所有自然數(shù)n都成立

B.P(n)對(duì)所有正偶數(shù)n成立

C.P(n)對(duì)所有正奇數(shù)n都成立

D.P(n)對(duì)所有大于1的自然數(shù)n成立答案:B22.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長(zhǎng)為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點(diǎn)E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.23.已知回歸直線的斜率的估計(jì)值是1.23,樣本中心點(diǎn)為(4,5),若解釋變量的值為10,則預(yù)報(bào)變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點(diǎn)為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時(shí),y=12.38故選C.24.若e1、e2、e3是三個(gè)不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請(qǐng)說(shuō)明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.25.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.26.若關(guān)于x的方程x2-2ax+2+a=0有兩個(gè)不相等的實(shí)根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。27.在平面直角坐標(biāo)系xOy中,橢圓x2a2+y2b2=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑作圓M,若過(guò)P(a2c,0)作圓M的兩條切線相互垂直,則橢圓的離心率為_(kāi)_____.答案:設(shè)切線PA、PB互相垂直,又半徑OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故為22.28.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.29.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B30.設(shè)z∈C,|z|≤2,則點(diǎn)Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點(diǎn)Z表示的圖形是半徑為2的圓面,故選B31.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8332.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C33.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).34.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A35.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.36.已知橢圓(a>b>0)的焦點(diǎn)分別為F1,F(xiàn)2,b=4,離心率e=過(guò)F1的直線交橢圓于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為()

A.10

B.12

C.16

D.20答案:D37.已知方程(1+k)x2-(1-k)y2=1表示焦點(diǎn)在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A38.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對(duì)該產(chǎn)品進(jìn)行測(cè)試,設(shè)第ε次首次取到正品,則P(ε=3)等于()

A.

B.

C.

D.答案:C39.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.40.下列命題:

①垂直于同一直線的兩直線平行;

②垂直于同一直線的兩平面平行;

③垂直于同一平面的兩直線平行;

④垂直于同一平面的兩平面平行;

其中正確的有()

A.③④

B.①②④

C.②③

D.②③④答案:C41.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為_(kāi)_____.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.42.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過(guò)點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.43.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.44.如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線與圓C過(guò)F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過(guò)F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過(guò)焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過(guò)橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過(guò)雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.45.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因?yàn)閗=5,結(jié)束循環(huán),輸出結(jié)果S=2+4+6+8=20.故為:20.46.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線,則這條直線與這個(gè)平面垂直;

②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直.

上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無(wú)數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無(wú)數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直,顯然正確.故選D.47.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開(kāi)展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒(méi)有發(fā)芽,則稱該次試驗(yàn)是失敗的.

(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;

(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.48.老師在班級(jí)50名學(xué)生中,依次抽取學(xué)號(hào)為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是()

A.隨機(jī)抽樣

B.分層抽樣

C.系統(tǒng)抽樣

D.以上都是答案:C49.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長(zhǎng)PE、PF、PG、PH交對(duì)邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.50.設(shè)F1,F(xiàn)2是雙曲線x29-y216=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設(shè)PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.第3卷一.綜合題(共50題)1.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過(guò)點(diǎn)P且平行于極軸的直線的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A2.若橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為2,它的一個(gè)焦點(diǎn)是(215,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標(biāo)準(zhǔn)方程是x280+y220=1.故為:x280+y220=1.3.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.4.下列隨機(jī)變量ξ服從二項(xiàng)分布的是()

①隨機(jī)變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點(diǎn)數(shù)是3的倍數(shù)的次數(shù);

②某射手擊中目標(biāo)的概率為0.9,從開(kāi)始射擊到擊中目標(biāo)所需的射擊次數(shù)ξ;

③有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N);

④有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N).

A.②③

B.①④

C.③④

D.①③答案:D5.設(shè)a,b是非負(fù)實(shí)數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實(shí)數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時(shí),a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時(shí),a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).6.命題“每一個(gè)素?cái)?shù)都是奇數(shù)”的否定是______.答案:原命題“每一個(gè)素?cái)?shù)都是奇數(shù)”是一個(gè)全稱命題它的否定是一個(gè)特稱命題,即“有的素?cái)?shù)不是奇數(shù)”故為:有的素?cái)?shù)不是奇數(shù)7.若有以下說(shuō)法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對(duì)于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說(shuō)法序號(hào)是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個(gè)向量相等.因此相等向量的模相等,故①正確;因?yàn)閱挝幌蛄康哪5扔?,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對(duì)于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時(shí)等號(hào)成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A8.72的正約數(shù)(包括1和72)共有______個(gè).答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計(jì)數(shù)原理共3×4個(gè).故為:12.9.將1,2,3,9這9個(gè)數(shù)字填在如圖的9個(gè)空格中,要求每一行從左到右,每一列從上到下分別依次增大,當(dāng)3,4固定在圖中的位置時(shí),填寫空格的方法數(shù)為()

A.6種

B.12種

C.18種

D.24種

答案:A10.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C11.一個(gè)正方體的展開(kāi)圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來(lái)的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開(kāi)圖,還原為正方體,AB,CD為相鄰表面,且無(wú)公共頂點(diǎn)的兩條面上的對(duì)角線∴AB與CD所成的角為60°故選D.12.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是

______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-113.口袋中裝有三個(gè)編號(hào)分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號(hào)后放回,連續(xù)取球兩次.則“兩次取球中有3號(hào)球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號(hào)球的概率為13,則兩次取得球都是3號(hào)求得概率為C22?(13)2=19,兩次取得球只有一次取得3號(hào)求得概率為C12?13?23=49,故“兩次取球中有3號(hào)球”的概率為19+49=59,故選A.14.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長(zhǎng)為8,離心率e=2,過(guò)雙曲線的弦AB被點(diǎn)P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長(zhǎng)為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長(zhǎng)為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長(zhǎng)度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.15.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,點(diǎn)M在AB上,且AM=13AB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.16.(x+1)4的展開(kāi)式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開(kāi)式的通項(xiàng)為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開(kāi)式中x2的系數(shù)為6故選項(xiàng)為B17.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.18.利用斜二測(cè)畫法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A19.若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等差數(shù)列,則該橢圓的離心率是(

A.

B.

C.

D.答案:B20.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為_(kāi)_____.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.21.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C22.直線y=x-1的傾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A23.三個(gè)數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對(duì)數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C24.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()

A.

B.

C.

D.答案:A25.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B26.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為_(kāi)_____.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.27.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個(gè)滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=128.若集合A={1,2,3},則集合A的真子集共有()A.3個(gè)B.5個(gè)C.7個(gè)D.8個(gè)答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選C.29.如圖所示,正方體的棱長(zhǎng)為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B30.若向量?jī)蓛伤傻慕窍嗟龋?,則等于()

A.2

B.5

C.2或5

D.或答案:C31.設(shè)直線l過(guò)點(diǎn)P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點(diǎn),求|PA|?|PB|答案:(1)由于過(guò)點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過(guò)點(diǎn)P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t1,則點(diǎn)A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因?yàn)閠1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.32.已知平面上直線l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D33.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.34.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論