版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年安徽交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.2.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()
A.a(chǎn)<b<c<d
B.a(chǎn)<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C3.想要檢驗(yàn)是否喜歡參加體育活動(dòng)是不是與性別有關(guān),應(yīng)該檢驗(yàn)()
A.H0:男性喜歡參加體育活動(dòng)
B.H0:女性不喜歡參加體育活動(dòng)
C.H0:喜歡參加體育活動(dòng)與性別有關(guān)
D.H0:喜歡參加體育活動(dòng)與性別無關(guān)答案:D4.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直于直線l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動(dòng)點(diǎn)M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當(dāng)且僅當(dāng)y1=±4時(shí)等號(hào)成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當(dāng)y22=64,即y2=±8時(shí)|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)5.若隨機(jī)變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:3166.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號(hào).即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號(hào),即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號(hào).故為114.7.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()
A.a(chǎn)=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a(chǎn)=cc=bb=a答案:B8.已知矩陣A將點(diǎn)(1,0)變換為(2,3),且屬于特征值3的一個(gè)特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項(xiàng)式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時(shí),α1=11,λ2=-1時(shí),α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.9.證明:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線的方程為,直線的方程為.設(shè)底邊上任意一點(diǎn)為,則到的距離;到的距離;到的距離.因?yàn)?,所以,結(jié)論成立.10.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.11.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.12.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D13.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).14.在正方體ABCD-A1B1C1D1中,若E為A1C1中點(diǎn),則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點(diǎn),AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.15.下列說法正確的是()
A.向量
與向量是共線向量,則A、B、C、D必在同一直線上
B.向量與平行,則與的方向相同或相反
C.向量的長度與向量的長度相等
D.單位向量都相等答案:C16.在極坐標(biāo)系中,若等邊三角形ABC(頂點(diǎn)A,B,C按順時(shí)針方向排列)的頂點(diǎn)A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點(diǎn)C的極坐標(biāo)為______.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點(diǎn)O為線段AB的中點(diǎn).故等邊三角形ABC的邊長為4,AB邊上的高(即點(diǎn)C到AB的距離)OC等于23.設(shè)點(diǎn)C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).17.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點(diǎn)的個(gè)數(shù)為()
A.1
B.2
C.3
D.4答案:B18.若向量{}是空間的一個(gè)基底,則一定可以與向量構(gòu)成空間的另一個(gè)基底的向量是()
A.
B.
C.
D.答案:C19.函數(shù)f(x)=2|log2x|的圖象大致是()
A.
B.
C.
D.
答案:C20.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長線交它的外接圓于點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問題的的最好的方法.21.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對(duì)應(yīng)的點(diǎn)為()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B22.例3.設(shè)a>0,b>0,解關(guān)于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對(duì)于不等式ax-2≤-bx,即(a+b)x≤2
因?yàn)閍>0,b>0即:x≤2a+b.(2)對(duì)于不等式ax-2≥bx,即(a-b)x≥2①當(dāng)a>b>0時(shí),由①得x≥2a-b,∴此時(shí),原不等式解為:x≥2a-b或x≤2a+b;當(dāng)a=b>0時(shí),由①得x∈?,∴此時(shí),原不等式解為:x≤2a+b;當(dāng)0<a<b時(shí),由①得x≤2a-b,∴此時(shí),原不等式解為:x≤2a+b.綜上可得,當(dāng)a>b>0時(shí),原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當(dāng)0<a≤b時(shí),原不等式解集為(-∞,2a+b].23.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點(diǎn)D,連接AD,則∠DAC的度數(shù)為
______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.24.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.25.向量a=(2,-1,4)與b=(-1,1,1)的夾角的余弦值為______.答案:∵a?b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a?b|a|
|b|=121?3=721.故為721.26.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項(xiàng)B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點(diǎn)在y軸,由此排除A.故選C.27.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).28.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6
表中有一個(gè)數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個(gè)模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.29.經(jīng)過拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A30.已知l1、l2是過點(diǎn)P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個(gè)交點(diǎn),分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).31.如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B,C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(Ⅰ)證明A,P,O,M四點(diǎn)共圓;
(Ⅱ)求∠OAM+∠APM的大小.答案:證明:(Ⅰ)連接OP,OM.因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對(duì)角互補(bǔ),所以A,P,O,M四點(diǎn)共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點(diǎn)共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點(diǎn)共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.32.如圖給出的是計(jì)算1+13+15+…+12013的值的一個(gè)程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.33.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C34.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略35.利用計(jì)算機(jī)隨機(jī)模擬方法計(jì)算y=x2與y=4所圍成的區(qū)域Ω的面積時(shí),可以先運(yùn)行以下算法步驟:
第一步:利用計(jì)算機(jī)產(chǎn)生兩個(gè)在[0,1]區(qū)間內(nèi)的均勻隨機(jī)數(shù)a,b;
第二步:對(duì)隨機(jī)數(shù)a,b實(shí)施變換:答案:根據(jù)題意可得,點(diǎn)落在y=x2與y=4所圍成的區(qū)域Ω的點(diǎn)的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.36.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B37.若不等式logax>sin2x(a>0,a≠1)對(duì)任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.38.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(
)。答案:4;39.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).40.已知點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()
A.
B.
C.
D.答案:D41.直線l與拋物線y2=2x相交于A、B兩點(diǎn),O為拋物線的頂點(diǎn),若OA⊥OB.證明:直線l過定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時(shí),設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(diǎn)(2,0)(11分)(II)當(dāng)直線l不存在斜率時(shí),設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(diǎn)(2,0)綜合(1)(2)可知,滿足條件的直線過定點(diǎn)(2,0).42.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α43.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時(shí),(1+x)m≥1+mx;即1≥1成立,x≠0時(shí),證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時(shí),原不等式成立;當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時(shí),不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時(shí),∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時(shí),不等式也成立.綜合(ⅰ)(ⅱ)知,對(duì)一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時(shí),(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時(shí),3≠4,等式不成立;當(dāng)n=2時(shí),32+42=52,等式成立;當(dāng)n=3時(shí),33+43+53=63,等式成立;當(dāng)n=4時(shí),34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時(shí),同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時(shí),原不等式中等號(hào)顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時(shí),m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時(shí),不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時(shí),因?yàn)閤>-1,所以1+x>0.又因?yàn)閤≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時(shí),不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.下同解法1.44.下列各組幾何體中是多面體的一組是(
)
A.三棱柱、四棱臺(tái)、球、圓錐
B.三棱柱、四棱臺(tái)、正方體、圓臺(tái)
C.三棱柱、四棱臺(tái)、正方體、六棱錐
D.圓錐、圓臺(tái)、球、半球答案:C45.拋物線y2=4x的焦點(diǎn)坐標(biāo)為()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B46.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()
A.4
B.
C.
D.答案:D47.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)48.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對(duì)累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時(shí)31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.49.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C50.按ABO血型系統(tǒng)學(xué)說,每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D第2卷一.綜合題(共50題)1.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.2.以直線x+3=0為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程是______.答案:由題意,拋物線的焦點(diǎn)在x軸上,焦點(diǎn)坐標(biāo)為(3,0),∴拋物線的標(biāo)準(zhǔn)方程是y2=12x故為:y2=12x3.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C4.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-25.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對(duì)應(yīng)關(guān)系相同,定義域?yàn)镽,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.6.已知直線l經(jīng)過點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.7.為研究變量x和y的線性相關(guān)性,甲、乙二人分別作了研究,利用線性回歸方法得到回歸直線方程l1和l2,兩人計(jì)算知.x相同,.y也相同,下列正確的是()A.l1與l2一定重合B.l1與l2一定平行C.l1與l2相交于點(diǎn)(.x,.y)D.無法判斷l(xiāng)1和l2是否相交答案:∵兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測數(shù)據(jù)的平均值都是t,∴兩組數(shù)據(jù)的樣本中心點(diǎn)是(.x,.y)∵回歸直線經(jīng)過樣本的中心點(diǎn),∴l(xiāng)1和l2都過(.x,.y).故選C.8.極點(diǎn)到直線ρ(cosθ+sinθ)=3的距離是
______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點(diǎn)到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.9.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A10.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:311.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C12.如圖,已知PA是圓O的切線,切點(diǎn)為A,PO交圓O于B、C兩點(diǎn),PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點(diǎn),PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點(diǎn)O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°13.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時(shí),2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時(shí),猜想2n>n2-n+2,證明如下:當(dāng)n=4時(shí),顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時(shí),猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時(shí),2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時(shí),猜想2n>n2-n+2成立,∴當(dāng)n≥4時(shí),an>n2+1.14.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.15.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:416.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個(gè)負(fù)數(shù)”時(shí)的假設(shè)為()
A.a(chǎn),b,c,d中至少有一個(gè)正數(shù)
B.a(chǎn),b,c,d全為正數(shù)
C.a(chǎn),b,c,d全都大于等于0
D.a(chǎn),b,c,d中至多有一個(gè)負(fù)數(shù)答案:C17.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C18.已知圖形F上的點(diǎn)A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點(diǎn),則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(
)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點(diǎn)坐標(biāo)代入可得B,點(diǎn)的坐標(biāo)為.所以選D.19.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時(shí)間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點(diǎn)B向結(jié)點(diǎn)A傳遞信息,信息可以分開沿不同的路線同時(shí)傳遞,則單位時(shí)間內(nèi)傳遞的最大信息量為()
A.26
B.24
C.20
D.19
答案:D20.△ABC中,若有一個(gè)內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因?yàn)锳≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.21.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(
)答案:A22.若點(diǎn)P分向量AB的比為34,則點(diǎn)A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.23.把方程化為以參數(shù)的參數(shù)方程是(
)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制24.根據(jù)給出的程序語言,畫出程序框圖,并計(jì)算程序運(yùn)行后的結(jié)果.
答案:程序框圖:模擬程序運(yùn)行:當(dāng)j=1時(shí),n=1,當(dāng)j=2時(shí),n=1,當(dāng)j=3時(shí),n=1,當(dāng)j=4時(shí),n=2,…當(dāng)j=8時(shí),n=2,…當(dāng)j=11時(shí),n=2,當(dāng)j=12時(shí),此時(shí)不滿足循環(huán)條件,退出循環(huán)程序運(yùn)行后的結(jié)果是:2.25.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C26.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實(shí)數(shù)m的取值范圍,使得:
(1)z是純虛數(shù);
(2)z是實(shí)數(shù);
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實(shí)數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對(duì)應(yīng)的點(diǎn)坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對(duì)應(yīng)點(diǎn)位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)27.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時(shí)α為第一象限角.或②sinα<0,cosα<0,此時(shí)α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.28.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.29.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.30.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書的概率;
(Ⅱ)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.31.命題“有的三角形的三個(gè)內(nèi)角成等差數(shù)列”的否定是______.答案:根據(jù)特稱命題的否定為全稱命題可知,“有的三角形的三個(gè)內(nèi)角成等差數(shù)列”的否定為“任意三角形的三個(gè)內(nèi)角不成等差數(shù)列”,故為:任意三角形的三個(gè)內(nèi)角不成等差數(shù)列32.已知一個(gè)學(xué)生的語文成績?yōu)?9,數(shù)學(xué)成績?yōu)?6,外語成績?yōu)?9.求他的總分和平均成績的一個(gè)算法為:
第一步:取A=89,B=96,C=99;
第二步:______;
第三步:______;
第四步:輸出計(jì)算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計(jì)算平均成績.x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.33.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的()
A.充分條件
B.必要條件
C.充要條件
D.等價(jià)條件答案:A34.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點(diǎn)M(1,-2,1)移動(dòng)到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2235.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±236.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C37.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.38.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.39.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次試驗(yàn)是失敗的.
(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.40.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B41.直線l過橢圓x24+y23=1的右焦點(diǎn)F2并與橢圓交與A、B兩點(diǎn),則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因?yàn)閨AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.42.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.43.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時(shí)=與交點(diǎn)橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點(diǎn)坐標(biāo)代入可得所以,,44.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D45.化簡下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC46.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C47.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.48.一部記錄影片在4個(gè)單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.49.設(shè)集合A={0,1,2,3},B={1,2,3,4},則集合A∩B的真子集的個(gè)數(shù)為()A.32個(gè)B.16個(gè)C.8個(gè)D.7個(gè)答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選D.50.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.第3卷一.綜合題(共50題)1.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p2.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時(shí),n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時(shí),等式左邊的項(xiàng)為:1+2+3+4故為:1+2+3+43.用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時(shí),左邊=2,右邊=2,等式成立;②假設(shè)n=k時(shí),結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時(shí),等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時(shí),等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立4.如圖是一個(gè)正三棱柱體的三視圖,該柱體的體積等于()A.3B.23C.2D.33答案:根據(jù)長對(duì)正,寬相等,高平齊,可得底面正三角形高為3,三棱柱高為1所以正三角形邊長為3sin60°=2,所以V=12×2×3×1=3,故選A.5.對(duì)變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B6.有四個(gè)游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤的序號(hào)______
答案:(1)游戲盤的中獎(jiǎng)概率為
38,(2)游戲盤的中獎(jiǎng)概率為
14,(3)游戲盤的中獎(jiǎng)概率為
26=13,(4)游戲盤的中獎(jiǎng)概率為
13,(1)游戲盤的中獎(jiǎng)概率最大.故為:(1).7.已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時(shí)速在[60,70]的汽車大約有200×0.4=80故選B.8.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長度為()
A.
B.
C.
D.答案:B9.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0
(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c10.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C11.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時(shí),S=2,n=2;當(dāng)n=2時(shí),S=6,n=3;當(dāng)n=3時(shí),S=14,n=4;當(dāng)n=4時(shí),S=30,n=5;故最后輸出的n值為5故為:512.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).
(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);
(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為240013.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個(gè)變化過程中,有兩個(gè)變量x、y,對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng),這時(shí)稱y是x的函數(shù).結(jié)合選項(xiàng)可知,只有選項(xiàng)B中是一個(gè)x對(duì)應(yīng)1或2個(gè)y故選B.14.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個(gè)邊長為a的正方形和1個(gè)邊長為b的正方形以及4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個(gè)邊長為c的正方形和4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個(gè)正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個(gè)錯(cuò)誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個(gè)邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個(gè)矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c215.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為()
A.
B.
C.
D.不確定答案:C16.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.17.凡自然數(shù)都是整數(shù),而
4是自然數(shù)
所以4是整數(shù).以上三段論推理()
A.正確
B.推理形式不正確
C.兩個(gè)“自然數(shù)”概念不一致
D.兩個(gè)“整數(shù)”概念不一致答案:A18.下面為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A19.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:20.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.21.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開始向右讀,請你依次寫出最先檢測的4顆種子的編號(hào)______,______,______,______.
(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列數(shù)字為1,故產(chǎn)生的第一個(gè)數(shù)字為:169,第二個(gè)數(shù)字為:555,第三個(gè)數(shù)字為:671,第四個(gè)數(shù)字為:998(超出編號(hào)范圍舍)第五個(gè)數(shù)字為:105故為:169,555,671,10522.過點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.23.一部記錄影片在4個(gè)單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.24.如圖是一個(gè)實(shí)物圖形,則它的左視圖大致為()A.
B.
C.
D.
答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對(duì)角線的矩形,并且對(duì)角線在左視圖中為實(shí)線,故選D.25.平面上一動(dòng)點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線的一支2a=2c時(shí),軌跡為一條射線2a>2c時(shí),無軌跡.26.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時(shí),一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.27.不等式log2(x+1)<1的解集為()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C28.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|
|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.29.有以下命題:①如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;②O,A,B,C為空間四點(diǎn),且向量不構(gòu)成空間的一個(gè)基底,那么點(diǎn)O,A,B,C一定共面;③已知向量是空間的一個(gè)基底,則向量,也是空間的一個(gè)基底.其中正確的命題是[
]A.①②
B.①③
C.②③
D.①②③答案:C30.拋物線y=4x2的焦點(diǎn)坐標(biāo)為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B31.若x~N(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- xx區(qū)省級(jí)產(chǎn)業(yè)園區(qū)基礎(chǔ)設(shè)施項(xiàng)目可行性研究報(bào)告
- 廣東xx城鎮(zhèn)老舊小區(qū)改造項(xiàng)目可行性研究報(bào)告
- 2024年藥師證租用與應(yīng)急處理服務(wù)合同模板3篇
- 積木活動(dòng)主題課程設(shè)計(jì)
- 老舊廠區(qū)改造經(jīng)濟(jì)可行性分析
- 產(chǎn)業(yè)園基礎(chǔ)設(shè)施項(xiàng)目可行性研究報(bào)告
- 2024年水利工程信息化建設(shè)合同范本3篇
- 2024年給水工程建設(shè)項(xiàng)目標(biāo)準(zhǔn)協(xié)議模板版B版
- 直角轉(zhuǎn)彎的課程設(shè)計(jì)
- 2024年版二手車居間買賣協(xié)議3篇
- 中考模擬作文:以專注循花前行
- 建設(shè)項(xiàng)目全過程工程咨詢-第一次形成性考核-國開(SC)-參考資料
- 【MOOC】財(cái)務(wù)管理-四川大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】電子技術(shù)實(shí)驗(yàn)-北京科技大學(xué) 中國大學(xué)慕課MOOC答案
- 2023-2024學(xué)年浙江省杭州市上城區(qū)教科版四年級(jí)上冊期末考試科學(xué)試卷
- 2024年粘高粱項(xiàng)目可行性研究報(bào)告
- 交通管理扣留車輛拖移保管 投標(biāo)方案(技術(shù)方案)
- 確保工期重點(diǎn)難點(diǎn)解決方案及措施
- 2024年律師事務(wù)所工作計(jì)劃(7篇)
- DB4105T 213-2023 12345 政務(wù)服務(wù)便民熱線數(shù)據(jù)分析規(guī)范
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語五年級(jí)上冊
評(píng)論
0/150
提交評(píng)論