2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩41頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣東科貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.

若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()

A.2

B.4

C.2或5

D.4或5答案:C2.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因?yàn)锳C、BC的長(zhǎng)分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽R(shí)t△BCA,∴BD=165,故為:1653.制作一個(gè)面積為1

m2,形狀為直角三角形的鐵架框,有下列四種長(zhǎng)度的鐵管供選擇,較經(jīng)濟(jì)的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長(zhǎng)為x2+4x2故周長(zhǎng)

l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時(shí)等號(hào)成立,故較經(jīng)濟(jì)的(既夠用又耗材量少)是5m故應(yīng)選B.4.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C5.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.6.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡(jiǎn)單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D7.若曲線C的極坐標(biāo)方程為

ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y8.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以兩條對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.9.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確10.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說法正確的是()

A.l1和l2必定平行

B.l1與l2必定重合

C.l1和l2有交點(diǎn)(s,t)

D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C11.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無(wú)法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無(wú)法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.12.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為913.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-314.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因?yàn)閦=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,3),所以位于第一象限.故選A.15.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡(jiǎn)為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.16.解下列關(guān)于x的不等式

(1)

(2)答案:(1)(2)原不等式的解集為解析:(1)

解:(2)

解:分析該題要設(shè)法去掉絕對(duì)值符號(hào),可由去分類討論當(dāng)時(shí)原不等式等價(jià)于

故得不等式的解集為所以原不等式的解集為17.某班有40名學(xué)生,其中有15人是共青團(tuán)員.現(xiàn)將全班分成4個(gè)小組,第一組有學(xué)生10人,共青團(tuán)員4人,從該班任選一個(gè)學(xué)生代表.在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團(tuán)員共有15人,而第一小組有4人是共青團(tuán)員,故在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為415,故選A.18.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D19.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()

A.

B.

C.±

D.±答案:C20.一射手對(duì)靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C21.定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn)。

已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)g(x)=-x+的圖象上,求b的最小值。

(參考公式:A(x1,y1),B(x2,y2)的中點(diǎn)坐標(biāo)為)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動(dòng)點(diǎn)為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個(gè)不等實(shí)根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對(duì)任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設(shè),則AB中點(diǎn)C的坐標(biāo)為,又AB的中點(diǎn)在直線上,∴,∴,又x1,x2是方程①的兩個(gè)根,∴,∴,,∴,∴當(dāng)時(shí),bmin=-1。</a<1。22.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()

A.k=4

B.k=-4

C.k=-9

D.k=9答案:B23.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.24.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機(jī)誤差e是由于計(jì)算不準(zhǔn)確造成的,可以通過精確計(jì)算避免隨機(jī)誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會(huì)導(dǎo)致隨機(jī)誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計(jì)中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計(jì)分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個(gè)預(yù)報(bào)值,不是由x唯一確定,故B不正確,隨機(jī)誤差不是由于計(jì)算不準(zhǔn)造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.25.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.26.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B27.如圖程序框圖箭頭a指向①處時(shí),輸出

s=______.箭頭a指向②處時(shí),輸出

s=______.答案:程序在運(yùn)行過程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時(shí),是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時(shí),是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.28.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C29.下列圖形中不一定是平面圖形的是(

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B30.A、B是直線l上的兩點(diǎn),AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點(diǎn)間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4331.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.32.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓33.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()

A.

B.

C.

D.

答案:A34.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線交AB于點(diǎn)A,∠A=20°,則

∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.35.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為122536.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.37.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.38.

若向量

=(3,2),=(0,-1),=(-1,2),則向量2-的坐標(biāo)坐標(biāo)是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D39.若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對(duì)值為定值a(0≤a≤2),試求動(dòng)點(diǎn)P的軌跡.答案:①當(dāng)a=0時(shí),||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點(diǎn)P的軌跡為直線:線段F1F2的垂直平分線.②當(dāng)a=2時(shí),||PF1|-|PF2||=2=|F1F2|,所以點(diǎn)P的軌跡為兩條射線.③當(dāng)0<a<2時(shí),||PF1|-|PF2||=a<|F1F2|,所以點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線.40.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長(zhǎng)為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B41.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A42.關(guān)于如圖所示幾何體的正確說法為______.

①這是一個(gè)六面體;

②這是一個(gè)四棱臺(tái);

③這是一個(gè)四棱柱;

④這是一個(gè)四棱柱和三棱柱的組合體;

⑤這是一個(gè)被截去一個(gè)三棱柱的四棱柱.答案:①因?yàn)橛辛鶄€(gè)面,屬于六面體的范圍,②這是一個(gè)很明顯的四棱柱,因?yàn)閭?cè)棱的延長(zhǎng)線不能交與一點(diǎn),所以不正確.③如果把幾何體放倒就會(huì)發(fā)現(xiàn)是一個(gè)四棱柱,④可以有四棱柱和三棱柱組成,⑤和④的想法一樣,割補(bǔ)方法就可以得到.故為:①③④⑤.43.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B44.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點(diǎn)F作FM∥AC、FN∥AB,分別交AB、AC于點(diǎn)M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A45.參數(shù)方程為t為參數(shù))表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D46.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.47.若直線l經(jīng)過原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B48.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長(zhǎng)為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長(zhǎng)為222-(2)2=22,故為22.49.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實(shí)數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±250.有一個(gè)正四棱錐,它的底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏?,但可以折疊),那么包裝紙的最小邊長(zhǎng)應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最?。O(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A第2卷一.綜合題(共50題)1.已知一物體在共點(diǎn)力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點(diǎn)力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B2.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.3.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-34.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.5.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個(gè)法向量.解析:以D為原點(diǎn),DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長(zhǎng)為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個(gè)法向量.6.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓C1的方程;

(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動(dòng)點(diǎn)M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡(jiǎn)得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當(dāng)且僅當(dāng)y1=±4時(shí)等號(hào)成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當(dāng)y22=64,即y2=±8時(shí)|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)7.由直線y=x+1上的一點(diǎn)向圓(x-3)2+y2=1引切線,則切線長(zhǎng)的最小值為()

A.1

B.2

C.

D.3答案:C8.如圖,在圓錐中,B為圓心,AB=8,BC=6

(1)求出這個(gè)幾何體的表面積;

(2)求出這個(gè)幾何體的體積.(保留π)答案:圓錐母線AC的長(zhǎng)=AB2+BC2=82+62=10(1)表面積=π×62+π×6×10=96π(2)體積=13×π×62×8=96π9.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()

A.

B.

C.

D.答案:A10.極點(diǎn)到直線ρ(cosθ+sinθ)=3的距離是

______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點(diǎn)到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.11.若直線按向量平移得到直線,那么(

)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無(wú)數(shù)個(gè)答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無(wú)數(shù)多個(gè).12.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點(diǎn);

(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).13.寫出系數(shù)矩陣為1221,且解為xy=11的一個(gè)線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個(gè)線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.14.在甲、乙兩個(gè)盒子里分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)小球,現(xiàn)從甲、乙兩個(gè)盒子里各取出1個(gè)小球,每個(gè)小球被取出的可能性相等.

(1)求取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率;

(2)求取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率;

(3)求取出的兩個(gè)小球上標(biāo)號(hào)之和大于5整除的概率.答案:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=38;(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為516;(3)其中取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的概率P=3815.籃球運(yùn)動(dòng)員在比賽中每次罰球命中得1分,罰不中得0分.已知某運(yùn)動(dòng)員罰球命中的概率為0.7,求

(1)他罰球1次的得分X的數(shù)學(xué)期望;

(2)他罰球2次的得分Y的數(shù)學(xué)期望;

(3)他罰球3次的得分η的數(shù)學(xué)期望.答案:(1)X的取值為1,2,則因?yàn)镻(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.16.設(shè)A(3,4),在x軸上有一點(diǎn)P(x,0),使得|PA|=5,則x等于()

A.0

B.6

C.0或6

D.0或-6答案:C17.從30個(gè)足球中抽取10個(gè)進(jìn)行質(zhì)量檢測(cè),說明利用隨機(jī)數(shù)法抽取這個(gè)樣本的步驟及公平性.答案:第一步:首先將30個(gè)足球編號(hào):00,01,02…29,第二步:在隨機(jī)數(shù)表中隨機(jī)的選一個(gè)數(shù)作為開始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個(gè)具有10個(gè)數(shù)據(jù)的樣本.其公平性在于:第一隨機(jī)數(shù)表中每一個(gè)位置上出現(xiàn)的哪一個(gè)數(shù)都是等可能的,第二從30個(gè)個(gè)體中抽到那一個(gè)個(gè)體的號(hào)碼也是機(jī)會(huì)均等的,基于以上兩點(diǎn),利用隨機(jī)數(shù)表抽取樣本保證了各個(gè)個(gè)體被抽到的機(jī)會(huì)是等可能的.18.設(shè)F1、F2分別是橢圓x225+y216=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),M是F1P的中點(diǎn),|OM|=3,則P點(diǎn)到橢圓左焦點(diǎn)距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.19.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤

D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A20.點(diǎn)(1,2)到原點(diǎn)的距離為()

A.1

B.5

C.

D.2答案:C21.已知正方形ABCD的邊長(zhǎng)為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D22.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C23.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x524.用反證法證明命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”時(shí),第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個(gè)鈍角”,故為“三角形的內(nèi)角中至少有兩個(gè)鈍角”.25.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為26.若一點(diǎn)P的極坐標(biāo)是(r,θ),則它的直角坐標(biāo)如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點(diǎn)P的極坐標(biāo)是(r,θ)的直角坐標(biāo)為:(rcosθ,rsinθ).27.一圓形紙片的圓心為O點(diǎn),Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于P點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點(diǎn)P到兩個(gè)定點(diǎn)O、Q的距離之和等于定長(zhǎng)R(R>|OQ|),由橢圓的定義可得,點(diǎn)P的軌跡為橢圓,故為④.28.設(shè)集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點(diǎn),點(diǎn)的橫坐標(biāo),縱坐標(biāo)都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.29.用A、B、C三類不同的元件連接成兩個(gè)系統(tǒng)N1、N2當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.

答案:0.792解析:解:分別記三個(gè)元件A、B、C能正常工作為事件A、B、C,由題意,這三個(gè)事件相互獨(dú)立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個(gè)正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。30.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點(diǎn)對(duì)稱,既[a,b]關(guān)于原點(diǎn)對(duì)稱.所以a與b互為相反數(shù)即a+b=0.故為:0.31.下列語(yǔ)句不屬于基本算法語(yǔ)句的是()

A.賦值語(yǔ)句

B.運(yùn)算語(yǔ)句

C.條件語(yǔ)句

D.循環(huán)語(yǔ)句答案:B32.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.33.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A34.某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)這種抽樣方法是哪一種?

(2)將這兩組數(shù)據(jù)用莖葉圖表示;

(3)將兩組數(shù)據(jù)比較,說明哪個(gè)車間產(chǎn)品較穩(wěn)定.答案:(1)因?yàn)殚g隔時(shí)間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因?yàn)?x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.35.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D36.將一根長(zhǎng)為3m的繩子在任意位置剪斷,則剪得兩段的長(zhǎng)都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長(zhǎng)都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長(zhǎng)都不小于1m,所以事件A發(fā)生的概率

P(A)=13.故選B37.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A38.如圖,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3339.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π40.若關(guān)于x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi),求a的取值范圍。答案:解:設(shè)f(x)=3x2-5x+a,則f(x)為開口向上的拋物線,如右圖所示,∵f(x)=0的兩根分別在區(qū)間(-2,0),(1,3)內(nèi),∴,即,解得-12<a<0,故所求a的取值范圍是{a|-12<a<0}。41.已知雙曲線的兩漸近線方程為y=±32x,一個(gè)焦點(diǎn)坐標(biāo)為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.42.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C43.已知=(1,2),=(-3,2),k+與-3垂直時(shí),k的值為(

A.17

B.18

C.19

D.20答案:C44.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()

A.25個(gè)

B.36個(gè)

C.100個(gè)

D.225個(gè)答案:D45.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.46.若點(diǎn)(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實(shí)數(shù)a的取值范圍是()

A.-2<a<2

B.0<a<2

C.a(chǎn)<-2或a>2

D.a(chǎn)=±2答案:A47.設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).

(1)設(shè)復(fù)數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

,

3)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于233,求實(shí)數(shù)x0的取值范圍.答案:(1)方法1:①當(dāng)n為奇數(shù)時(shí),|z+3|-|z-3|=2a,常數(shù)a∈

(32

,

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當(dāng)n為偶數(shù)時(shí),|z+3|+|z-3|=4a,常數(shù)a∈

(32

,

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因?yàn)?2<a<3,所以a=3,此時(shí)軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過點(diǎn)D(2,2),且點(diǎn)D(2,2)對(duì)應(yīng)的復(fù)數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對(duì)應(yīng)的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對(duì)應(yīng)的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設(shè)點(diǎn)A的坐標(biāo)為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當(dāng)0<43x0≤23即0<x0≤332時(shí),|AB|2min=3-13x20≥43?0<x0≤5當(dāng)43x0>23即x0>332時(shí),|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)48.經(jīng)過兩點(diǎn)A(-3,5),B(1,1

)的直線傾斜角為______.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1

)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.49.已知

p:所有國(guó)產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()

A.所有國(guó)產(chǎn)手機(jī)都沒有陷阱消費(fèi)

B.有一部國(guó)產(chǎn)手機(jī)有陷阱消費(fèi)

C.有一部國(guó)產(chǎn)手機(jī)沒有陷阱消費(fèi)

D.國(guó)外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C50.橢圓的長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,則橢圓上的點(diǎn)到橢圓中心的距離的取值范圍是______.答案:橢圓上的點(diǎn)到圓心的最小距離為短半軸的長(zhǎng)度,最大距離為長(zhǎng)半軸的長(zhǎng)度因?yàn)闄E圓的長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,所以橢圓上的點(diǎn)到圓心的最小距離為4,最大距離為5所以橢圓上的點(diǎn)到橢圓中心距離的取值范圍是[4,5]故為:[4,5]第3卷一.綜合題(共50題)1.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:12.過點(diǎn)A(0,2),且與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有()條.A.1B.2C.3D.4答案:∵點(diǎn)A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對(duì)稱軸平行,故選C.3.已知△ABC的頂點(diǎn)坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長(zhǎng)為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點(diǎn)為BC邊上的三等分點(diǎn)則D點(diǎn)分線段BC所成的比為12則易求出D點(diǎn)坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:324.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.5.如圖,PT是⊙O的切線,切點(diǎn)為T,直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,326.已知一個(gè)學(xué)生的語(yǔ)文成績(jī)?yōu)?9,數(shù)學(xué)成績(jī)?yōu)?6,外語(yǔ)成績(jī)?yōu)?9.求他的總分和平均成績(jī)的一個(gè)算法為:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:輸出計(jì)算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計(jì)算平均成績(jī).x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.7.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C8.(難線性運(yùn)算、坐標(biāo)運(yùn)算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:設(shè)A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),則M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,當(dāng)AP與PC同向,BP與PD同向時(shí)取等號(hào),設(shè)PC=λAP,PD=μBP,則1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,當(dāng)x=y=12時(shí),M的最小值為22.9.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A10.

008年北京成功舉辦了第29屆奧運(yùn)會(huì),中國(guó)取得了51金、21銀、28銅的驕人成績(jī).下表為北京奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類比賽的門票:

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過男籃門票的費(fèi)用,則可以預(yù)訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D11.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時(shí),2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時(shí),猜想2n>n2-n+2,證明如下:當(dāng)n=4時(shí),顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時(shí),猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時(shí),2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時(shí),猜想2n>n2-n+2成立,∴當(dāng)n≥4時(shí),an>n2+1.12.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c13.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一點(diǎn)D,使△ABD為鈍角三角形的概率為()A.16B.13C.12D.23答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件對(duì)應(yīng)的是長(zhǎng)度為3的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況第一種∠ADB為鈍角,這種情況的分界是∠ADB=90°的時(shí)候,此時(shí)BD=1∴這種情況下,滿足要求的0<BD<1.第二種∠OAD為鈍角,這種情況的分界是∠BAD=90°的時(shí)候,此時(shí)BD=4∴這種情況下,不可能綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1P=13故選B14.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x515.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個(gè)系統(tǒng)抽樣,總體中個(gè)體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.16.已知正三角形ABC的邊長(zhǎng)為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實(shí)際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.17.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.18.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.19.甲、乙兩人共同投擲一枚硬幣,規(guī)定硬幣正面朝上甲得1分,否則乙得1分,先積3分者獲勝,并結(jié)束游戲.

①求在前3次投擲中甲得2分,乙得1分的概率.

②設(shè)ξ表示到游戲結(jié)束時(shí)乙的得分,求ξ的分布列以及期望.答案:(1)由題意知本題是一個(gè)古典概型試驗(yàn)發(fā)生的事件是擲一枚硬幣3次,出現(xiàn)的所有可能情況共有以下8種.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情況有以下3種,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值為:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列為:∴Eξ=1×316+2×316+3×12=331620.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.21.制作一個(gè)面積為1

m2,形狀為直角三角形的鐵架框,有下列四種長(zhǎng)度的鐵管供選擇,較經(jīng)濟(jì)的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長(zhǎng)為x2+4x2故周長(zhǎng)

l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時(shí)等號(hào)成立,故較經(jīng)濟(jì)的(既夠用又耗材量少)是5m故應(yīng)選B.22.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C23.“神六”上天并順利返回,讓越來越多的青少年對(duì)航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn),設(shè)計(jì)方案

如圖:航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為x2100+y225=1,變軌(航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對(duì)稱軸、M(0,647)為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為D(8,0),觀測(cè)點(diǎn)A(4,0)、B(6,0)同時(shí)跟蹤航天器.試問:當(dāng)航天器在x軸上方時(shí),觀測(cè)點(diǎn)A、B測(cè)得離航天器的距離分別為______時(shí)航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點(diǎn)為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點(diǎn)的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.24.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D25.若直線l經(jīng)過原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B26.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長(zhǎng)之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:927.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D28.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過點(diǎn)()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B29.設(shè)隨機(jī)變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()

A.

B.

C.

D.答案:C30.(坐標(biāo)系與參數(shù)方程)

從極點(diǎn)O作直線與另一直線ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.

(1)求點(diǎn)P的軌跡方程;

(2)設(shè)R為直線ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為131.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D32.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點(diǎn),求|PA|?|PB|答案:(1)由于過點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點(diǎn)P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t1,則點(diǎn)A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因?yàn)閠1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.33.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論