2023年昆明幼兒師范高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年昆明幼兒師范高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年昆明幼兒師范高等專科學校高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年昆明幼兒師范高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年昆明幼兒師范高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年昆明幼兒師范高等專科學校高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D2.關于x的方程ax+b=0,當a,b滿足條件______

時,方程的解集是有限集;滿足條件______

時,方程的解集是無限集;滿足條件______

時,方程的解集是空集.答案:關于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.3.如果一個直角三角形的兩條邊長分別是6和8,另一個與它相似的直角三角形邊長分別是4和3及x,那么x的值的個數(shù)為()

A.1個

B.2個

C.2個以上但有限

D.無數(shù)個答案:B4.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域為(0,+∞).故為(0,+∞).5.直線2x-3y+10=0的法向量的坐標可以是答案:C6.圓柱的底面積為S,側面展開圖為正方形,那么這個圓柱的側面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側面積為2πRl=4πS.故選D.7.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對應的點為()

A.(5,-9,2)

B.(-5,9,-2)

C.(5,9,-2)

D.(5,-9,-2)答案:B8.(坐標系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:829.已知三角形ABC的頂點坐標為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點。

(1)求AB邊所在的直線方程。

(2)求中線AM的長。

(3)求點C關于直線AB對稱點的坐標。答案:解:(1)由兩點式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點坐標公式得M(1,1)∴|AM|==(3)設C點關于直線AB的對稱點為C′(x′,y′)則CC′⊥AB且線段CC′的中點在直線AB上。即解之得x′=

y′=C′點坐標為(,)10.拋擲3顆質地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.11.函數(shù)y=(12)x的值域為______.答案:因為函數(shù)y=(12)x是指數(shù)函數(shù),所以它的值域是(0,+∞).故為:(0,+∞).12.書架上有5本數(shù)學書,4本物理書,5本化學書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學書,4本物理書,5本化學書,∴從中任取一本,不同的取法有5+4+5=14種故選A.13.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略14.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關,u

與v

正相關

B.變量x

與y

負相關,u

與v

正相關

C.變量x

與y

正相關,u

與v

負相關

D.變量x

與y

負相關,u

與v

負相關答案:B15.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C16.復數(shù)z=sin1+icos2在復平面內對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四17.某學校高一年級男生人數(shù)占該年級學生人數(shù)的40%,在一次考試中,男,女平均分數(shù)分別為75、80,則這次考試該年級學生平均分數(shù)為______.答案:設該班男生有x人,女生有y人,這次考試該年級學生平均分數(shù)為a.根據(jù)題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級學生平均分數(shù)為78.故為:78.18.設a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當且僅當a=b=c時,等號成立.19.使關于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。20.若動點P到兩個定點F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點P的軌跡.答案:①當a=0時,||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點P的軌跡為直線:線段F1F2的垂直平分線.②當a=2時,||PF1|-|PF2||=2=|F1F2|,所以點P的軌跡為兩條射線.③當0<a<2時,||PF1|-|PF2||=a<|F1F2|,所以點P的軌跡是以F1、F2為焦點的雙曲線.21.拋物線頂點在坐標原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.22.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴當1≤x≤10時,由4x=60得x=15?[1,10],不滿足題意;當10<x≤100時,由2x+10=60得x=25∈(10,100],滿足題意;當x>100時,由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.23.(Ⅰ)解關于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對于|m|≤1恒成立,求x的取值范圍.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴l(xiāng)gx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)設y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.當y=1時,不等式不成立.設f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調函數(shù).當-1≤m≤1時,若要f(m)>0?f(1)>0f(-1)>0.?y2-2y-1+1-y>0y2-2y-1+y-1>0.?y2-3y>0y2-y-2>0.?y<0或y>3y<-1或y>2.則y<-1或y>3.∴l(xiāng)gx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范圍是(0,110)∪(103,+∞).24.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當x≤5時,y=10x=10,得x=1;當x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.25.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若從散點圖分析,y與x線性相關,且

y=0.95x+

a,則

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∵y與x線性相關,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.26.各項都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤

2n-1.1當n=1時,左邊=1,右邊=1,所以命題成立.當n=2時,左邊<右邊,所以命題成立②假設n=k時命題成立,即1+13+…+12k-1≤2k-1,當n=k+1時,左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)

2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.27.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學歸納法證明f(2n)>n2時,f(2k+1)-f(2k)等于______.答案:因為假設n=k時,f(2k)=1+12+13+…+12k,當n=k+1時,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+128.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個點

B.2個點

C.1個點

D.四條直線答案:D29.一個算法的流程圖如圖所示,則輸出S的值為

.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.30.某班從6名班干部(其中男生4人,女生2人)中選3人參加學校學生會的干部競選.

(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.31.函數(shù)f(x)=8xx2+2(x>0)()A.當x=2時,取得最小值83B.當x=2時,取得最大值83C.當x=2時,取得最小值22D.當x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當且僅當x=2x即x=2時,取得最大值22故選D.32.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C33.設a,b∈R.“a=O”是“復數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因為a,b∈R.“a=O”時“復數(shù)a+bi不一定是純虛數(shù)”.“復數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.34.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.35.已知直線l:kx-y+1+2k=0.

(1)證明:直線l過定點;

(2)若直線l交x負半軸于A,交y正半軸于B,△AOB的面積為S,試求S的最小值并求出此時直線l的方程.答案:(1)證明:由已知得k(x+2)+(1-y)=0,∴無論k取何值,直線過定點(-2,1).(2)令y=0得A點坐標為(-2-1k,0),令x=0得B點坐標為(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.當且僅當4k=1k,即k=12時取等號.即△AOB的面積的最小值為4,此時直線l的方程為12x-y+1+1=0.即x-2y+4=036.在極坐標系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=1,所以直線l與極軸的交點的極坐標為(1,0).故為:(1,0).37.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.38.如圖為某公司的組織結構圖,則后勤部的直接領導是______.

答案:有已知中某公司的組織結構圖,可得專家辦公室直接領導:財務部,后勤部和編輯部三個部門,故后勤部的直接領導是專家辦公室.故為:專家辦公室.39.已知線段AB的兩端點坐標為A(9,-3,4),B(9,2,1),則線段AB與坐標平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C40.設a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結論成立.②假設n=k時,結論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立41.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a

,

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.42.方程組的解集是[

]A.{5,1}

B.{1,5}

C.{(5,1)}

D.{(1,5)}答案:C43.已知橢圓的參數(shù)方程為(?為參數(shù)),點M在橢圓上,點O為原點,則當?=時,OM的斜率為()

A.1

B.2

C.

D.2答案:D44.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.45.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因為函數(shù)y=5x,x∈N+的定義域為正整數(shù)集N+,所以當自變量x取1,2,3,4,…時,其相應的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.46.從集合{0,1,2,3,4,5,6}中任取兩個互不相等的數(shù)a,b,組成復數(shù)a+bi,其中虛數(shù)有()

A.36個

B.42個

C.30個

D.35個答案:A47.直線y=k(x-2)+3必過定點,該定點的坐標為()

A.(3,2)

B.(2,3)

C.(2,-3)

D.(-2,3)答案:B48.已知a=20.5,,,則a,b,c的大小關系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B49.(文)函數(shù)f(x)=x+2x(x∈(0

2

]

)的值域是______.答案:f(x)=x+2x≥

22當且僅當x=2時取等號該函數(shù)在(0,2)上單調遞減,在(2,2]上單調遞增∴當x=2時函數(shù)取最小值22,x趨近0時,函數(shù)值趨近無窮大故函數(shù)f(x)=x+2x(x∈(0

,

2

]

)的值域是[22,+∞)故為:[22,+∞)50.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關于x軸的反射變換,再將所得圖形繞原點逆時針旋轉90°.

(1)分別求兩次變換所對應的矩陣M1,M2;

(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關于x軸的反射變換M1=100-1,繞原點逆時針旋轉90°的變換M2=0-110.(4分)(2)∵M2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)第2卷一.綜合題(共50題)1.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.2.某自動化儀表公司組織結構如圖所示,其中采購部的直接領導是()

A.副總經(jīng)理(甲)

B.副總經(jīng)理(乙)

C.總經(jīng)理

D.董事會

答案:B3.如圖,l1、l2、l3是同一平面內的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()

A.2

B.

C.

D.

答案:D4.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D5.若復數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:126.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C7.某學校高一年級男生人數(shù)占該年級學生人數(shù)的40%,在一次考試中,男,女平均分數(shù)分別為75、80,則這次考試該年級學生平均分數(shù)為______.答案:設該班男生有x人,女生有y人,這次考試該年級學生平均分數(shù)為a.根據(jù)題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級學生平均分數(shù)為78.故為:78.8.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設當n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.9.甲,乙兩個工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結論:()

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產(chǎn)品質量比乙的產(chǎn)品質量好一些

B.乙的產(chǎn)品質量比甲的產(chǎn)品質量好一些

C.兩人的產(chǎn)品質量一樣好

D.無法判斷誰的質量好一些答案:B10.極坐標方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B11.將直線y=x繞原點逆時針旋轉60°,所得直線的方程為()

A.y=-x

B.

C.y=-3x

D.答案:A12.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設正確的是()

A.假設a、b、c都是偶數(shù)

B.假設a、b、c都不是偶數(shù)

C.假設a、b、c至多有一個偶數(shù)

D.假設a、b、c至多有兩個偶數(shù)答案:B13.已知拋物線y2=4x的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設N到準線的距離等于d,由拋物線的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.14.方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,則實數(shù)k的取值范圍為______.答案:構造函數(shù)f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴實數(shù)k的取值范圍為(0,15)故為:(0,15)15.設a,b,c∈R,則復數(shù)(a+bi)(c+di)為實數(shù)的充要條件是()

A.a(chǎn)d-bc=0

B.a(chǎn)c-bd=0

C.a(chǎn)c+bd=0

D.a(chǎn)d+bc=0答案:D16.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=017.直線2x-y=7與直線3x+2y-7=0的交點是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A18.某射手射擊所得環(huán)數(shù)X的分布列為:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()

A.0.28

B.0.88

C.0.79

D.0.51答案:C19.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.20.數(shù)學歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達式為______.答案:根據(jù)數(shù)學歸納法的步驟,首先要驗證證明當n取第一個值時命題成立;結合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).21.直線kx-y+1=3k,當k變動時,所有直線都通過定點[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A22.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數(shù)是()

A.120

B.240

C.480

D.720答案:C23.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C24.已知圓錐的母線長為5,底面周長為6π,則圓錐的體積是______.答案:圓錐的底面周長為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.25.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,則k的取值范圍是

______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1226.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a27.設a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()

A.

B.

C.

D.

答案:B28.已知P為拋物線y2=4x上一點,設P到準線的距離為d1,P到點A(1,4)的距離為d2,則d1+d2的最小值為______.答案:∵y2=4x,焦點坐標為F(1,0)根據(jù)拋物線定義可知P到準線的距離為d1=|PF|d1+d2=|PF|+|PA|進而可知當A,P,F(xiàn)三點共線時,d1+d2的最小值=|AF|=4故為429.直線的參數(shù)方程為,l上的點P1對應的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C30.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關于點A的對稱點,則有,,代入曲線C的方程,得關于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關于點A的對稱點在曲線C上,因此,曲線C與C1關于點A對稱.31.如圖,點O是平行六面體ABCD-A1B1C1D1的對角線BD1與A1C的交點,=,=,=,則=()

A.++

B.++

C.--+

D.+-

答案:C32.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.33.某學校準備調查高三年級學生完成課后作業(yè)所需時間,采取了兩種抽樣調查的方式:第一種由學生會的同學隨機對24名同學進行調查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學生會的同學隨機對24名同學進行調查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,是系統(tǒng)抽樣,故選D34.利用計算機在區(qū)間(0,1)上產(chǎn)生兩個隨機數(shù)a和b,則方程有實根的概率為()

A.

B.

C.

D.1答案:A35.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數(shù)X、Y共有36對∴概率為336=112故選C.36.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調遞減,其圖象關于直線x=2對稱,則下列式子可以成立的是()

A.

B.

C.

D.答案:D37.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數(shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:738.已知棱長都相等的正三棱錐內接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.39.下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我們將比值為0.618的矩形稱為“完美矩形”,0.618為標準值,根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),正確結論是()

A.甲批次的總體平均數(shù)與標準值更接近

B.乙批次的總體平均數(shù)與標準值更接近

C.兩個批次總體平均數(shù)與標準值接近程度相同

D.以上選項均不對答案:A40.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

①若K2的觀測值滿足K2≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病;

②從獨立性檢驗可知有99%的把握認為吸煙與患病有關系時,我們說某人吸煙,那么他有99%的可能患有肺??;

③從統(tǒng)計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現(xiàn)錯誤.

A.①

B.①③

C.③

D.②答案:C41.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b42.若復數(shù)z=a+bi(a、b∈R)是虛數(shù),則a、b應滿足的條件是()A.a(chǎn)=0,b≠0B.a(chǎn)≠0,b≠0C.a(chǎn)≠0,b∈RD.b≠0,a∈R答案:∵復數(shù)z=a+bi(a、b∈R)是虛數(shù),∴根據(jù)虛數(shù)的定義得b≠0,a∈R,故選D.43.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;

(1)求雙曲線的標準方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設雙曲線的標準方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標準方程為y216-x216=1.(2)設弦AB所在直線方程為y-2=k(x-4),A,B的坐標為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.44.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B45.已知一個學生的語文成績?yōu)?9,數(shù)學成績?yōu)?6,外語成績?yōu)?9.求他的總分和平均成績的一個算法為:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:輸出計算的結果.答案:由題意,第二步,求和S=A+B+C,第三步,計算平均成績.x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.46.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.

(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;

(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;

(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.

…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.

…(14分)47.點P(2,5)關于直線x+y=1的對稱點的坐標是(

)。答案:(-4,-1)48.要從已編號(1~60)的60枚最新研制的某型導彈中隨機抽取6枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B49.設a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當0<x≤12時,函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點時,a=22,故虛線所示的y=logax的圖象對應的底數(shù)a應滿足22<a<1.故為:(22,1).50.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題第3卷一.綜合題(共50題)1.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()

A.[,)

B.[,)

C.[,)

D.[,)答案:A2.如圖程序框圖箭頭a指向①處時,輸出

s=______.箭頭a指向②處時,輸出

s=______.答案:程序在運行過程中各變量的情況如下表所示:(1)當箭頭a指向①時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當箭頭a指向②時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.3.下面對算法描述正確的一項是:()A.算法只能用自然語言來描述B.算法只能用圖形方式來表示C.同一問題可以有不同的算法D.同一問題的算法不同,結果必然不同答案:算法的特點:有窮性,確定性,順序性與正確性,不唯一性,普遍性算法可以用自然語言、圖形語言,程序語言來表示,故A、B不對同一問題可以用不同的算法來描述,但結果一定相同,故D不對.C對.故應選C.4.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點,

(Ⅰ)求證:DM⊥EB;

(Ⅱ)設二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標系A-xyz,設CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22?12+02+

02=13,即cosβ=135.我們稱正整數(shù)n為“好數(shù)”,如果n的二進制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進制表示中恰有5位數(shù)碼的二進制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進制數(shù)為:11111011100,它是一個十一位的二進制數(shù).其中一位的二進制數(shù)是:1,共有C11個;其中二位的二進制數(shù)是:11,共有C22個;

其中三位的二進制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個6.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是

|10-5|62+82=12,故為:12.7.一圓形紙片的圓心為O點,Q是圓內異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當點A運動時點P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.8.若方程2ax2-x-1=0在(0,1)內恰有一解,則a的取值范圍是______.答案:當a>0時,方程對應的函數(shù)f(x)=2ax2-x-1在(0,1)內恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內恰無解.故為:a>19.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D10.滿足條件|z|=|3+4i|的復數(shù)z在復平面上對應點的軌跡是______.答案:|z|=5,即點Z到原點O的距離為5∴z所對應點的軌跡為以(0,0)為圓心,5為半徑的圓.11.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.12.下列關于算法的說法中正確的個數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關于算法的說法中正確的個數(shù)是3.故選C.13.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

,

相加得:左3……………(10分)14.輸入3個數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT

m,n,kr=m

MOD

nWHILE

r<>0m=nn=rr=m

MOD

nWENDr=k

MOD

nWHILE

r<>0k=nn=rr=k

MOD

nWENDPRINT

nEND15.在空間直角坐標系中,點P(2,-4,6)關于y軸對稱點P′的坐標為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標系中,點(2,-4,6)關于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).16.設定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標原點,點M是C上任意一點,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標準k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結論:

①A、B、N三點共線;

②直線MN的方向向量可以為a=(0,1);

③“函數(shù)y=5x2在[0,1]上可在標準1下線性近似”;

④“函數(shù)y=5x2在[0,1]上可在標準54下線性近似”.

其中所有正確結論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標準54下線性近似”,故④成立,③不成立,故為:①②④17.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.18.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標準形式為x22+y22k=1;根據(jù)題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.19.已知兩條直線l1:y=x,l2:ax-y=0,其中a為實數(shù),當這兩條直線的夾角在(0,)內變動時,a的取值范圍是(

A.(0,1)

B.

C.

D.答案:C20.某海域內有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導航燈的海拔高度分別為h1、h2,且兩個導航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導航燈的仰角分別為θ1、θ2,那么船只已進入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a21.設O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p22.要從10名女生與5名男生中選出6名學生組成課外活動小組,則符合按性別比例分層抽樣的概率為()

A.

B.

C.

D.

答案:C23.將4封不同的信隨機地投入到3個信箱里,記有信的信箱個數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是24.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C25.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()

A.

B.

C.

D.答案:A26.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.27.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應,則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應,則當x=1時,y=4;當x=2時,y=7;當x=3時,y=10;當x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,528.若圓錐的側面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.29.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1230.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點______.答案:回歸直線方程一定過樣本的中心點(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,

.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點是(1.1675,2.3925),故為(1.1675,2.3925).31.在半徑為R的球內作一內接圓柱,這個圓柱的底面半徑和高為何值時,它的側面積最大?并求此最大值.答案:解

如圖,設內接圓柱的高為h,圓柱的底面半徑為r,則h2+4r2=4R2因為h2+4r2≥4rh,當且僅當h=2r時取等.所以4R2≥4rh,即rh≤R2所以,S側=2πrh≤2πR2,當且僅當h=2r時取等.又因為h2+4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論