版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年曹妃甸職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D2.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.3.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.4.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設(shè)點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.5.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D6.集合{1,2,3}的真子集的個數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選C.7.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A8.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標為()
A.(3,-3)
B.(-,3)
C.(,-3)
D.(3,-)答案:D9.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=110.命題“對于正數(shù)a,若a>1,則lg
a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個數(shù)為()A.0B.1C.2D.4答案:原命題“對于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.11.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;
(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;
(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.12.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.13.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是
______.答案:∵點M在z軸上,∴設(shè)點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).14.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)15.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.16.設(shè)O為坐標原點,F(xiàn)為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標是
(
)A.B.C.D.答案:B解析:略17.如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼?,求出該拋物線的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點為原點,KF所在直線為x軸建立平面直角坐標系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點為M,P、Q、M在拋物線準線l上的射影分別為A、B、D,∵PQ是拋物線過焦點F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點F的直線與橢圓交于P、Q兩點,則以PQ為直徑的圓與橢圓相應(yīng)的準線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點F的直線與雙曲線交于P、Q兩點,則以PQ為直徑的圓與雙曲線相應(yīng)的準線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準線l相交.18.Rt△ABC中,CD是斜邊AB上的高,該圖中只有x個三角形與△ABC相似,則x的值為()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三對相似三角形,該圖中只有2個三角形與△ABC相似.故選B.19.頻率分布直方圖的重心是()
A.眾數(shù)
B.中位數(shù)
C.標準差
D.平均數(shù)答案:D20.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:221.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.22.已知△ABC三個頂點的坐標為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.23.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學??萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.24.籃球運動員在比賽中每次罰球命中得1分,罰不中得0分.已知某運動員罰球命中的概率為0.7,求
(1)他罰球1次的得分X的數(shù)學期望;
(2)他罰球2次的得分Y的數(shù)學期望;
(3)他罰球3次的得分η的數(shù)學期望.答案:(1)X的取值為1,2,則因為P(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.25.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()
A.直線
B.橢圓
C.拋物線
D.雙曲線答案:D26.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x',y')是所得的直線上一點,[1
1][x']=[x0][1
1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.27.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設(shè)兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)28.參數(shù)方程為t為參數(shù))表示的曲線是()
A.一條直線
B.兩條直線
C.一條射線
D.兩條射線答案:D29.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據(jù)拋物線方程可求得焦點坐標為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)30.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),
(1)求函數(shù)f(x)的解析式;
(2)求f(5);
(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因為函數(shù)f(x)的圖象經(jīng)過點(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域為N+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.31.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分數(shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分數(shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分數(shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D32.某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這項考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為ξ,求ξ的數(shù)學期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補考合格”為事件B2.(Ⅰ)不需要補考就獲得證書的事件為A1?B1,注意到A1與B1相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨立性與互斥性,根據(jù)相互獨立事件同時發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學期望為83.33.畫出《數(shù)學3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:34.試求288和123的最大公約數(shù)是
答案:3解析:,,,.∴和的最大公約數(shù)35.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16536.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()
A.
B.
C.±
D.±答案:C37.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:238.設(shè)a,b,c∈R,則復數(shù)(a+bi)(c+di)為實數(shù)的充要條件是()
A.a(chǎn)d-bc=0
B.a(chǎn)c-bd=0
C.a(chǎn)c+bd=0
D.a(chǎn)d+bc=0答案:D39.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(
)
A.2
B.1
C.0
D.-1答案:D40.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.41.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C42.與
向量
=(2,-1,2)共線且滿足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D43.栽培甲、乙兩種果樹,先要培育成苗,然后再進行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;
(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.44.函數(shù)f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,當x∈[-2,2]時,求f(x)的最值,并說明當f(x)取最值時的x的值;
(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當x=-2時,fmax(x)=f(-2)=11當x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.45.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A46.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為
______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2247.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.48.某學校為了調(diào)查高三年級的200名文科學生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學生會的同學隨機抽取20名同學進行調(diào)查;第二種由教務(wù)處對該年級的文科學生進行編號,從001到200,抽取學號最后一位為2的同學進行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:第一種由學生會的同學隨機抽取20名同學進行調(diào)查;這是一種簡單隨機抽樣,第二種由教務(wù)處對該年級的文科學生進行編號,從001到200,抽取學號最后一位為2的同學進行調(diào)查,對于個體比較多的總體,采用系統(tǒng)抽樣,故選D.49.已知O、A、M、B為平面上四點,且,則()
A.點M在線段AB上
B.點B在線段AM上
C.點A在線段BM上
D.O、A、M、B四點一定共線答案:B50.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運行過程中各變量的情況如下表示:
是否繼續(xù)循環(huán)
A
N循環(huán)前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以這個打印的第五個數(shù)是31.故為:31第2卷一.綜合題(共50題)1.利用計算機隨機模擬方法計算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:
第一步:利用計算機產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機數(shù)a,b;
第二步:對隨機數(shù)a,b實施變換:答案:根據(jù)題意可得,點落在y=x2與y=4所圍成的區(qū)域Ω的點的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.2.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B3.已知,,且與垂直,則實數(shù)λ的值為()
A.±
B.1
C.-
D.答案:D4.已知點M在平面ABC內(nèi),并且對空間任意一點O,有OM=xOA+13OB+13OC,則x的值為()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四點共面,∴必有x+13+13=1,解之可得x=13,故選D5.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領(lǐng)導:財務(wù)部,后勤部和編輯部三個部門,故后勤部的直接領(lǐng)導是專家辦公室.故為:專家辦公室.6.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()
A.A88
B.A55A44
C.A44A44
D.A85答案:B7.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.
(ⅰ)求證:直線AB恒過一定點,并求出該定點的坐標;
(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標,若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(?。┲狝B中點N(a,a2+42),直線AB的方程為y=a2x+2當a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當a=0時,經(jīng)檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標為E(±2,-2).(15分)8.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個能被3整除”時,假設(shè)應(yīng)為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a(chǎn)不能被3整除答案:B9.某市某年一個月中30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;
(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.
分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.
…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)10.下面四個結(jié)論:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定通過原點;
③偶函數(shù)的圖象關(guān)于y軸對稱;
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),
其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.11.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.12.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A13.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)14.
如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A15.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C16.某個命題與正整數(shù)n有關(guān),如果當n=k(k∈N+)時命題成立,那么可推得當n=k+1時命題也成立.
現(xiàn)已知當n=7時該命題不成立,那么可推得()
A.當n=6時該命題不成立
B.當n=6時該命題成立
C.當n=8時該命題不成立
D.當n=8時該命題成立答案:A17.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個點的坐標是()
A.(,)
B.(,)
C.(2,-7)
D.(1,0)答案:B18.在△ABC中,已知角A,B,C所對的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.19.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.20.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B21.設(shè),求證:。答案:證明略解析:證明:因為,所以有。又,故有?!?0分于是有得證。
…………20分22.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問題的程序框圖;
(2)以下是解決該問題的一個程序,但有幾處錯誤,請找出錯誤并予以更正.
i=1S=1n=0DO
S<=500
S=S+i
i=i+1
n=n+1WENDPRINT
n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;
②PRINT
n+1
應(yīng)改為PRINT
n;
③S=1應(yīng)改為S=0.23.利用計算機在區(qū)間(0,1)上產(chǎn)生兩個隨機數(shù)a和b,則方程有實根的概率為()
A.
B.
C.
D.1答案:A24.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.25.用數(shù)學歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C26.在對兩個變量x,y進行線性回歸分析時,有下列步驟:
①對所求出的回歸直線方程作出解釋;
②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
③求線性回歸方程;
④求相關(guān)系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D27.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D28.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計數(shù)原理來解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個元素,與另外一名女生作為兩個元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.29.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應(yīng)聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當10<x≤100時,y=2x+10∈(30,210],又因為60∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.30.在極坐標系中,點A的極坐標為(2,0),直線l的極坐標方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點A到直線l的距離為
|2+0+2|2=22,故為22.31.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A32.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.33.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()
A.a(chǎn)<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a(chǎn)<b<1<d<c
答案:B34.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D35.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.36.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°37.現(xiàn)有編號分別為1,2,3,4,5,6,7,8,9的九道不同的數(shù)學題,某同學從這九道題中一次隨機抽取兩道題,每題被抽到的概率是相等的,用符號(x,y)表示事件“抽到兩題的編號分別為x,y,且x<y”.
(1)共有多少個基本事件?并列舉出來.
(2)求該同學所抽取的兩道題的編號之和小于17但不小于11的概率.答案:(1)共有36種基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)設(shè)事件A=“兩道題的編號之和小于17但不小于11”則事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15種.∴P(A)=1536=512.38.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.39.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D40.已知兩點A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A41.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13542.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.43.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.44.某學校為了解該校1200名男生的百米成績(單位:秒),隨機選擇了50名學生進行調(diào)查.如圖是這50名學生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計這1200名學生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.45.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.當且僅當x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.46.如圖給出了一個算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語句的功能,第一個條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個數(shù)的最小數(shù).故選B47.如圖,在正方體OABC-O1A1B1C1中,棱長為2,E是B1B的中點,則點E的坐標為()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A48.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.49.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.50.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.第3卷一.綜合題(共50題)1.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C2.一動圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點P的軌跡是雙曲線的一支.故選C.3.8的值為()
A.2
B.4
C.6
D.8答案:B4.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C5.設(shè)A1,A2,A3,A4是平面直角坐標系中兩兩不同的四點,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A1,A2,已知點C(c,0),D(d,O)(c,d∈R)調(diào)和分割點A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點B.D可能是線段AB的中點C.C,D可能同時在線段AB上D.C,D不可能同時在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點,則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯誤;同理B錯誤;若C,D同時在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時C和D點重合,與條件矛盾,故C錯誤.故選D6.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③7.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:
(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;
(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個甲這樣的人才能滿足題意.解析:(1)設(shè)A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨立,從而A與、與B、與均相互獨立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設(shè)至少需要n個甲這樣的人,而n個甲這樣的人譯不出的概率為,∴n個甲這樣的人能譯出的概率為,由∴至少需4個甲這樣的人才能滿足題意.8.從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個,根據(jù)古典概型概率公式得到P=820=25,故選B.9.圓ρ=5cosθ-5sinθ的圓心的極坐標是()
A.(-5,-)
B.(-5,)
C.(5,)
D.(-5,)答案:A10.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C11.在畫兩個變量的散點圖時,下面哪個敘述是正確的()
A.預報變量x軸上,解釋變量y軸上
B.解釋變量x軸上,預報變量y軸上
C.可以選擇兩個變量中任意一個變量x軸上
D.可以選擇兩個變量中任意一個變量y軸上答案:B12.下列幾種說法正確的個數(shù)是()
①相等的角在直觀圖中對應(yīng)的角仍然相等;
②相等的線段在直觀圖中對應(yīng)的線段仍然相等;
③平行的線段在直觀圖中對應(yīng)的線段仍然平行;
④線段的中點在直觀圖中仍然是線段的中點.
A.1
B.2
C.3
D.4答案:B13.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A14.投擲一個質(zhì)地均勻的、每個面上標有一個數(shù)字的正方體玩具,它的六個面中,有兩個面標的數(shù)字是0,兩個面標的數(shù)字是2,兩個面標的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標和縱坐標
(1)求點P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點為頂點作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點P的坐標有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點P的坐標有:(0,0),(0,2),(2,0),(2,2),共4種D、故點P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.15.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.16.設(shè)O、A、B、C為平面上四個點,(
)
A.2
B.2
C.3
D.3答案:C17.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=118.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標方程;
(2)當0≤t<π2及π≤t<3π2時,各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標普通方程為x2-y24=1.(2)當0≤t≤π2時,x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點);當0≤t≤3π2時,x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點).19.用三段論的形式寫出下列演繹推理.
(1)若兩角是對頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對頂角;
(2)矩形的對角線相等,正方形是矩形,所以,正方形的對角線相等.答案:(1)兩個角是對頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對頂角.結(jié)論(2)每一個矩形的對角線相等,大前提正方形是矩形,小前提正方形的對角線相等.結(jié)論20.同時擲兩顆骰子,得到的點數(shù)和為4的概率是______.答案:同時擲兩顆骰子得到的點數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11221.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.22.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.23.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.24.F1,F(xiàn)2是橢圓x2a2+y2b2=1的兩個焦點,點P是橢圓上任意一點,從F1引∠F1PF2的外角平分線的垂線,交F2P的延長線于M,則點M的軌跡是______.答案:設(shè)從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動點M到點F2的距離為定值2a,因此,點M的軌跡是以點F2為圓心,半徑為2a的圓.故為:以點F2為圓心,半徑為2a的圓.25.設(shè)兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:826.已知點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.27.正方形ABCD的邊長為1,=,=,則|+|=(
)
A.0
B.2
C.
D.2答案:C28.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.29.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設(shè)y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數(shù)f(x)的值域為[2,32].故為:C.30.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導函數(shù)恒等于0,故D正確;故選D.31.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.32.已知
p:所有國產(chǎn)手機都有陷阱消費,則¬p是()
A.所有國產(chǎn)手機都沒有陷阱消費
B.有一部國產(chǎn)手機有陷阱消費
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5《大學之道》說課稿 2024-2025學年統(tǒng)編版高中語文選擇性必修上冊
- 福建省南平市吳屯中學2021-2022學年高一化學月考試卷含解析
- 個人續(xù)簽合同:2024年合作合同書意向確認版B版
- 2024棄土場租賃合同環(huán)保驗收標準范本3篇
- 2023-2024學年人教版高中信息技術(shù)必修一第二章第三節(jié)《程序設(shè)計基本知識》說課稿
- 科學復習贏在期末
- 鏡頭下的旅行故事
- 培訓服務(wù)合同(2篇)
- 《自救器的使用與創(chuàng)傷急救》培訓課件2025
- 2024淘寶代運營服務(wù)合作協(xié)議及年度店鋪運營策略優(yōu)化協(xié)議3篇
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 開封辦公樓頂發(fā)光字制作預算單
- 呼吸機波形分析及臨床應(yīng)用
- 安全生產(chǎn)標準化管理工作流程圖
- 德龍自卸車合格證掃描件(原圖)
- 藥店-醫(yī)療器械組織機構(gòu)和部門設(shè)置說明-醫(yī)療器械經(jīng)營組織機構(gòu)圖--醫(yī)療器械組織機構(gòu)圖
- 常用緊固件選用指南
- 自薦書(彩色封面)
- [國家公務(wù)員考試密押題庫]申論模擬925
- 高一(4)班分科后第一次班會課件PPT
評論
0/150
提交評論