2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江蘇信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B2.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.3.(幾何證明選講)如圖,點(diǎn)A、B、C都在⊙O上,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若AB=5,BC=3,CD=6,則線段AC的長(zhǎng)為_(kāi)_____.答案:∵過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.54.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點(diǎn)對(duì)稱,既[a,b]關(guān)于原點(diǎn)對(duì)稱.所以a與b互為相反數(shù)即a+b=0.故為:0.5.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為96.如圖,從圓O外一點(diǎn)P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為_(kāi)_____.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:27.拋物線y2=4x,O為坐標(biāo)原點(diǎn),A,B為拋物線上兩個(gè)動(dòng)點(diǎn),且OA⊥OB,當(dāng)直線AB的傾斜角為45°時(shí),△AOB的面積為_(kāi)_____.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因?yàn)镺A⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:858.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π9.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確10.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102011.用0.618法確定的試點(diǎn),則經(jīng)過(guò)(

)次試驗(yàn)后,存優(yōu)范圍縮小為原來(lái)的0.6184倍.答案:512.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè)球,則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是

______.答案:設(shè)含紅球個(gè)數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時(shí),表示從中取出2個(gè)球,其中不含紅球,當(dāng)ξ=1時(shí),表示從中取出2個(gè)球,其中1個(gè)紅球,1個(gè)黃球,當(dāng)ξ=2時(shí),表示從中取出2個(gè)球,其中2個(gè)紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.13.直線y=33x繞原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:114.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.15.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A16.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過(guò)定點(diǎn)(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.17.兩條互相平行的直線分別過(guò)點(diǎn)A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當(dāng)d取最大值時(shí)兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時(shí),即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時(shí),設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時(shí),兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)18.在(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:2519.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立20.在某項(xiàng)體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個(gè)最高分和一個(gè)攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評(píng)委為該選手打出的7個(gè)分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個(gè)最低分89,去掉一個(gè)最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.21.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點(diǎn),M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡(jiǎn)得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2222.讀下面的程序:

上面的程序在執(zhí)行時(shí)如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B23.已知e1

e2是夾角為60°的兩個(gè)單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:724.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).25.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A26.______稱為向量的長(zhǎng)度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,稱為向量AB的長(zhǎng)度(或成為模),記作|AB|;長(zhǎng)度為零的向量稱為零向量,記作0;長(zhǎng)度等于1個(gè)單位的向量稱為單位向量.故為:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,|AB|;長(zhǎng)度為零的向量,0;長(zhǎng)度等于1個(gè)單位的向量.27.設(shè)復(fù)數(shù)z的實(shí)部是

12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實(shí)部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.28.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B29.通過(guò)隨機(jī)詢問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

男女總計(jì)愛(ài)好402060不愛(ài)好203050總計(jì)6050110為了判斷愛(ài)好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因?yàn)镻(k2≥6.635)≈0.01,所以判定愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān),那么這種判斷出錯(cuò)的可能性為_(kāi)_____.答案:由題意知本題所給的觀測(cè)值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個(gè)結(jié)論有0.01=1%的機(jī)會(huì)說(shuō)錯(cuò),故為:1%30.某校高一年級(jí)8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個(gè),按照從小到大的順序?yàn)椋?7,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.531.按ABO血型系統(tǒng)學(xué)說(shuō),每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()

A.12種

B.6種

C.10種

D.9種答案:D32.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因?yàn)閦=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,3),所以位于第一象限.故選A.33.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.34.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1~5號(hào),6~10號(hào),…,196~200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組,由分組可知,抽號(hào)的間隔為5,∵第5組抽出的號(hào)碼為22,∴第6組抽出的號(hào)碼為27,第7組抽出的號(hào)碼為32,第8組抽出的號(hào)碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;2035.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.36.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若=3,則=(

A.

B.2

C.

D.3答案:A37.將一枚均勻硬幣

隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D38.若橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為439.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A40.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過(guò)計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是()

A.有99%的人認(rèn)為該欄目?jī)?yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒(méi)有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D41.

在△ABC中,點(diǎn)D在線段BC的延長(zhǎng)線上,且BC=3CD,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D42.為了參加奧運(yùn)會(huì),對(duì)自行車運(yùn)動(dòng)員甲、乙兩人在相同的條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請(qǐng)判斷:誰(shuí)參加這項(xiàng)重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)43.已知△A′B′C′是水平放置的邊長(zhǎng)為a的正三角形△ABC的斜二測(cè)平面直觀圖,那么△A′B′C′的面積為_(kāi)_____.答案:正三角形ABC的邊長(zhǎng)為a,故面積為34a2,而原圖和直觀圖面積之間的關(guān)系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.44.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.45.設(shè)A=xn+x-n,B=xn-1+x1-n,當(dāng)x∈R+,n∈N+時(shí),求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當(dāng)x≥1時(shí),x-1≥0,x2n-1-1≥0;當(dāng)x<1時(shí),x-1<0,x2n-1<0,即x-1與x2n-1-1同號(hào).∴A-B≥0.∴A≥B.46.兩條直線x-y+6=0與x+y+6=0的夾角為()

A.

B.

C.0

D.答案:D47.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個(gè)模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.48.某種燈泡的耐用時(shí)間超過(guò)1000小時(shí)的概率為0.2,有3個(gè)相互獨(dú)立的燈泡在使用1000小時(shí)以后,最多只有1個(gè)損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D49.某學(xué)校為了了解學(xué)生的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時(shí)間的頻率分布表:

序號(hào)(i)分組(睡眠時(shí)間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時(shí)間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時(shí)間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)50.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A第2卷一.綜合題(共50題)1.設(shè)xi,yi

(i=1,2,…,n)是實(shí)數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個(gè)排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.2.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:253.將某班的60名學(xué)生編號(hào)為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個(gè)容量為5的樣本,且隨機(jī)抽得的一個(gè)號(hào)碼為04,則剩下的四個(gè)號(hào)碼依次是______.答案:用系統(tǒng)抽樣抽出的5個(gè)學(xué)生的號(hào)碼從小到大成等差數(shù)列,隨機(jī)抽得的一個(gè)號(hào)碼為04則剩下的四個(gè)號(hào)碼依次是16、28、40、52.故為:16、28、40、524.由直線y=x+1上的一點(diǎn)向圓(x-3)2+y2=1引切線,則切線長(zhǎng)的最小值為()

A.1

B.2

C.

D.3答案:C5.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()

A.2個(gè)

B.3個(gè)

C.6個(gè)

D.9個(gè)

答案:D6.直線(a+1)x-(2a+5)y-6=0必過(guò)一定點(diǎn),定點(diǎn)的坐標(biāo)為(

)。答案:(-4,-2)7.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()

A.

B.

C.

D.

答案:D8.下列說(shuō)法中正確的是()

A.若∥,則與向相同

B.若||<||,則<

C.起點(diǎn)不同,但方向相同且模相等的兩個(gè)向量相等

D.所有的單位向量都相等答案:C9.(理)

設(shè)O為坐標(biāo)原點(diǎn),向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)QA?QB取得最小值時(shí),點(diǎn)Q的坐標(biāo)為_(kāi)_____.答案:∵OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時(shí),QA?QB取得最小值.此時(shí)Q的坐標(biāo)為(43,43,83)故為:(43,43,83)10.已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過(guò)球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個(gè)圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯(cuò)誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過(guò)球心的截面如(1)圖所示;(2)過(guò)三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過(guò)三棱錐的一個(gè)頂點(diǎn)(不過(guò)棱)和球心所得截面如(3)圖所示;(4)棱長(zhǎng)都相等的正三棱錐和球心不可能在同一個(gè)面上,所以(4)是錯(cuò)誤的.故選C.11.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動(dòng)點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u(píng)=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.12.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立13.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C14.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.15.已知圓C:x2+y2-4y-6y+12=0,求:

(1)過(guò)點(diǎn)A(3,5)的圓的切線方程;

(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過(guò)點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過(guò)圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.16.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.17.若a=(1,1),則|a|=______.答案:由題意知,a=(1,1),則|a|=1+1=2,故為:2.18.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對(duì)任意的x∈R,2x≤0

D.對(duì)任意的x∈R,2x>0答案:D19.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長(zhǎng)度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.20.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有如下一組數(shù)據(jù):

x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.

∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.21.下列語(yǔ)句不屬于基本算法語(yǔ)句的是()

A.賦值語(yǔ)句

B.運(yùn)算語(yǔ)句

C.條件語(yǔ)句

D.循環(huán)語(yǔ)句答案:B22.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P,若PBPA=12,PCPD=13,則BCAD的值為_(kāi)_____.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.23.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),

(Ⅰ)求證:DM⊥EB;

(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個(gè)法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22?12+02+

02=13,即cosβ=1324.從拋物線y2=4x上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點(diǎn)為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C25.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.26.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C27.某公司招聘員工,經(jīng)過(guò)筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時(shí),y=2x+10∈(30,210],又因?yàn)?0∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.28.直線(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)為()

A.

B.

C.

D.答案:B29.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A30.盒子中有10張獎(jiǎng)券,其中3張有獎(jiǎng),甲、乙先后從中各抽取1張(不放回),記“甲中獎(jiǎng)”為A,“乙中獎(jiǎng)”為B.

(1)求P(A),P(B),P(AB),P(A|B);

(2)A與B是否相互獨(dú)立,說(shuō)明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.31.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C32.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.

求證:(1)△ABC∽△EDC;

(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.33.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實(shí)數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時(shí)是常函數(shù),x≥0時(shí)是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.34.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.35.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為_(kāi)_____.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11436.設(shè)函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.37.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(

A.

B.

C.

D.答案:B38.若不等式的解集,則實(shí)數(shù)=___________.答案:-439.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C40.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.

(1)求A1C與DB所成角的大小;

(2)求二面角D-A1B-C的余弦值;

(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.41.某學(xué)生離家去學(xué)校,由于怕遲到,所以一開(kāi)始就跑步,等跑累了再走余下的路程.

在如圖中縱軸表示離學(xué)校的距離,橫軸表示出發(fā)后的時(shí)間,則如圖中的四個(gè)圖形中較符合該學(xué)生走法的是()A.

B.

C.

D.

答案:由題意可知:由于怕遲到,所以一開(kāi)始就跑步,所以剛開(kāi)始離學(xué)校的距離隨時(shí)間的推移應(yīng)該相對(duì)較快.而等跑累了再走余下的路程,則說(shuō)明離學(xué)校的距離隨時(shí)間的推移在后半段時(shí)間應(yīng)該相對(duì)較慢.所以適合的圖象為:故選B.42.拋物線y2=4x,O為坐標(biāo)原點(diǎn),A,B為拋物線上兩個(gè)動(dòng)點(diǎn),且OA⊥OB,當(dāng)直線AB的傾斜角為45°時(shí),△AOB的面積為_(kāi)_____.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因?yàn)镺A⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:8543.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過(guò)點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)44.將1,2,3,9這9個(gè)數(shù)字填在如圖的9個(gè)空格中,要求每一行從左到右,每一列從上到下分別依次增大,當(dāng)3,4固定在圖中的位置時(shí),填寫空格的方法數(shù)為()

A.6種

B.12種

C.18種

D.24種

答案:A45.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓=1的一個(gè)焦點(diǎn)重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A46.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為_(kāi)_____.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線,所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).47.某校欲在一塊長(zhǎng)、短半軸長(zhǎng)分別為10米與8米的橢圓形土地中規(guī)劃一個(gè)矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.

A.80

B.160

C.320

D.160答案:B48.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C49.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.50.已知不等式a≤對(duì)x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對(duì)x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.第3卷一.綜合題(共50題)1.下列集合中,不同于另外三個(gè)集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對(duì)于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個(gè)元素,即方程“x=0”.故選D.2.已知函數(shù)f(x)對(duì)其定義域內(nèi)任意兩個(gè)實(shí)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn).答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個(gè)交點(diǎn),…(2分)(1)若f(x)的圖象與x軸有兩個(gè)交點(diǎn),不妨設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對(duì)其定義域內(nèi)任意實(shí)數(shù)x1,x2,當(dāng)x1<x2時(shí),有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)交點(diǎn).…(11分)(2)若f(x)的圖象與x軸交點(diǎn)多于兩個(gè),可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)以上交點(diǎn).綜上,函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn)…(14分)3.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:44.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果對(duì)于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個(gè)函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對(duì)應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無(wú)窮多個(gè),②錯(cuò)誤③y=lgx在(0,+∞)單調(diào)遞增,對(duì)應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時(shí)x2不存在④錯(cuò)誤故選D.5.實(shí)數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個(gè)方格中的內(nèi)容分別為()

A.有理數(shù)、零、整數(shù)

B.有理數(shù)、整數(shù)、零

C.零、有理數(shù)、整數(shù)

D.整數(shù)、有理數(shù)、零

答案:B6.設(shè)直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.7.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.8.如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;

(2)若tan∠CED=12,⊙O的半徑為3,求OA的長(zhǎng).答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).9.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B10.已知均為單位向量,且=,則,的夾角為()

A.

B.

C.

D.答案:C11.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·

|PD|,

(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說(shuō)明它表示什么曲線;

(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個(gè)不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。12.設(shè)P是邊長(zhǎng)為23的正△ABC內(nèi)的一點(diǎn),x,y,z是P到三角形三邊的距離,則x+y+z的最大值為_(kāi)_____.答案:正三角形的邊長(zhǎng)為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點(diǎn)∴點(diǎn)P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當(dāng)且僅當(dāng)x=y=z=1時(shí),x+y+z的最大值為3故為:313.下列說(shuō)法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說(shuō)明選擇的模型比較合適;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說(shuō)明模型的擬和效果越好;

③比較兩個(gè)模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.

其中說(shuō)法正確的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C14.如圖,橢圓C2x2a2+

y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過(guò)原點(diǎn)的直線,l是與n垂直相交與點(diǎn)P,與橢圓相交于A,B兩點(diǎn)的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說(shuō)出;若不存在,請(qǐng)說(shuō)明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn),且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡(jiǎn)得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡(jiǎn)得-5(k2+1)=0矛盾.即此時(shí)直線l不存在.(ii)當(dāng)l垂直于x軸時(shí),滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點(diǎn)的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時(shí),OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時(shí),OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時(shí)直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.15.下列說(shuō)法中正確的是()

A.若∥,則與向相同

B.若||<||,則<

C.起點(diǎn)不同,但方向相同且模相等的兩個(gè)向量相等

D.所有的單位向量都相等答案:C16.設(shè)隨機(jī)變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()

A.0

B.1

C.μ

D.μ答案:C17.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)不共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D18.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).19.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.20.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為_(kāi)_____.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.21.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()

A.171

B.184

C.200

D.392答案:C22.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D23.來(lái)自中國(guó)、英國(guó)、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來(lái)自不同國(guó)家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B24.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()

A.1

B.2

C.3

D.2006答案:B25.(選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ=與曲線(t為參數(shù))相較于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為(

)。答案:(2.5,2.5)26.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無(wú)軌跡答案:C27.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12

時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.28.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個(gè)向量首尾相接后,構(gòu)成一個(gè)三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:629.拋物線y=14x2的焦點(diǎn)坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點(diǎn)坐標(biāo)是(0,1),故為(0,1).30.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.31.當(dāng)x∈N+時(shí),用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時(shí),(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.32.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域?yàn)閧2,3,4,5}.33.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個(gè)邊長(zhǎng)為a的正方形和1個(gè)邊長(zhǎng)為b的正方形以及4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個(gè)邊長(zhǎng)為c的正方形和4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個(gè)正方形的面積相等(邊長(zhǎng)都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡(jiǎn)得a2+b2=c2.下面是一個(gè)錯(cuò)誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過(guò)點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過(guò)點(diǎn)B作BM⊥PQ,垂足為M;再過(guò)點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個(gè)矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論