2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年內(nèi)蒙古經(jīng)貿(mào)外語職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D2.若集合A={1,2,3},則集合A的真子集共有()A.3個(gè)B.5個(gè)C.7個(gè)D.8個(gè)答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選C.3.如圖,平面內(nèi)有三個(gè)向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.4.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.5.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.6.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對(duì)值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價(jià)于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.7.由9個(gè)正數(shù)組成的矩陣

中,每行中的三個(gè)數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個(gè)數(shù)之和等于9,則a22≥1.其中正確的個(gè)數(shù)有()

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)答案:B8.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D9.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.10.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號(hào)的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D11.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率

P(A)=13.故選B12.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為k≠±1.故為:k≠±1.13.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.14.已知G是△ABC的重心,過G的一條直線交AB、AC兩點(diǎn)分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為315.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi),任取2個(gè)球,那么下面互斥而不對(duì)立的兩個(gè)事件是()

A.恰有1個(gè)白球;恰有2個(gè)白球

B.至少有1個(gè)白球;都是白球

C.至少有1個(gè)白球;

至少有1個(gè)紅球

D.至少有1個(gè)白球;

都是紅球答案:A16.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時(shí),y=2x+10∈(30,210],又因?yàn)?0∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.17.某學(xué)校為了調(diào)查高三年級(jí)的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機(jī)抽樣,第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,對(duì)于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.18.若橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為419.從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),這個(gè)兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個(gè),根據(jù)古典概型概率公式得到P=820=25,故選B.20.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A21.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D22.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22323.曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),則a=______.答案:由題意,∵曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),∴22-a-2+2=0∴a=4故為424.三個(gè)數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對(duì)數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C25.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(diǎn)(1,2),O為原點(diǎn).求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(diǎn)(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當(dāng)且僅當(dāng)1a=2b=12,即a=2且b=4時(shí),等號(hào)成立.故△OAB面積的最小值是4.26.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.27.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:428.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因?yàn)檎叫蔚倪呴L為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.29.某初級(jí)中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),求得間隔數(shù)k==16,即每16人抽取一個(gè)人.在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從33~48這16個(gè)數(shù)中應(yīng)取的數(shù)是(

A.40

B.39

C.38

D.37答案:B30.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.31.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問:(1)這種猜想,你認(rèn)為正確嗎?

(2)不管猜想是否正確,這個(gè)結(jié)論是通過什么推理方法得到的?

(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立32.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B33.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

選B評(píng)析:考察考生對(duì)不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號(hào)與不等號(hào)的關(guān)系。34.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.35.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于

4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.36.已知數(shù)列{an}前n項(xiàng)的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時(shí),左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時(shí)結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時(shí),等式也成立.…(13分)根據(jù)(1)(2)可知對(duì)任意的正整數(shù)n∈N*都成立.…(14分)37.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(

).答案:0<a≤138.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.39.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.40.如果一個(gè)圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個(gè)圓錐的表面積是12×2π×2+π?12=3π.故:3π.41.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號(hào).即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號(hào),即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號(hào).故為114.42.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值時(shí)兩圓外切?

(2)m取何值時(shí)兩圓內(nèi)切?

(3)當(dāng)m=45時(shí),求兩圓的公共弦所在直線的方程和公共弦的長.答案:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長為211-4=27.43.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場(chǎng)比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動(dòng)中,發(fā)揮得更穩(wěn)定的是()

A.甲

B.乙

C.甲、乙相同

D.不能確定答案:B44.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是()

A.

B.

C.

D.

答案:A45.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D46.點(diǎn)(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)≠±1答案:A47.雙曲線x2-4y2=4的兩個(gè)焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足·=0,則△F1PF2的面積為()

A.1

B.

C.2

D.答案:A48.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A49.已知點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()

A.

B.

C.

D.答案:D50.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B第2卷一.綜合題(共50題)1.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)2.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()

A.100

B.125

C.64

D.80答案:A3.設(shè)a,b是不共線的兩個(gè)向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線,則m的值為()

A.1

B.2

C.-2

D.-1答案:D4.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C5.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()

A.1

B.2

C.3

D.2006答案:B6.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.7.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A8.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表

廣告費(fèi)用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.9.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因?yàn)榧螦={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.10.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點(diǎn)A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.11.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個(gè)實(shí)根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D12.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C13.若A是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),過點(diǎn)A向y軸作垂線,垂足為B,則線段AB中點(diǎn)C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D14.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.15.參數(shù)方程(θ為參數(shù))表示的曲線為()

A.圓的一部分

B.橢圓的一部分

C.雙曲線的一部分

D.拋物線的一部分答案:D16.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B17.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測(cè),今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:

方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;

方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56

000元;

方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.

(1)試求方案3中損失費(fèi)ξ(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時(shí)發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費(fèi)為隨機(jī)變量ξ,則ξ的分布列為:(2)對(duì)方案1來說,花費(fèi)4000元;對(duì)方案2來說,建圍墻需花費(fèi)1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時(shí),損失約56000元,而兩河流同時(shí)發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費(fèi)為:1000+56000×0.045=3520(元).對(duì)于方案來說,損失費(fèi)的數(shù)學(xué)期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.18.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B19.A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無窮多個(gè)C.零個(gè)D.一個(gè)或無窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的無數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的一個(gè)大圓故選:D20.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因?yàn)橐阎獂2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.21.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時(shí),f(x)=g(x)?

(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.22.不等式|x-2|+|x+1|<5的解集為()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C23.方程組的解集是[

]A.{5,1}

B.{1,5}

C.{(5,1)}

D.{(1,5)}答案:C24.已知函數(shù)f(x)=2x+a的圖象不過第三象限,則常數(shù)a的取值范圍是

______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個(gè)單位得到,若函數(shù)f(x)=2x+a的圖象不過第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.25.同時(shí)擲兩顆骰子,得到的點(diǎn)數(shù)和為4的概率是______.答案:同時(shí)擲兩顆骰子得到的點(diǎn)數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11226.下面五個(gè)命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個(gè)向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對(duì)于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號(hào)為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯(cuò)誤;(2)由共線向量的定義,方向相反的兩個(gè)向量一定是共線向量,故錯(cuò)誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯(cuò)誤;(4)因?yàn)閨a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)27.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對(duì)稱y=(13)x左移一個(gè)單位y=(13)x+1上移2個(gè)單位y=(13)x+1+2.28.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C29.設(shè)a∈(0,1)∪(1,+∞),對(duì)任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對(duì)任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).30.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()

A.40

B.30

C.20

D.12答案:A31.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C32.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.33.設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準(zhǔn)線為x=-2,∵點(diǎn)P到y(tǒng)軸的距離是4,∴到準(zhǔn)線的距離是4+2=6,根據(jù)拋物線的定義可知點(diǎn)P到該拋物線焦點(diǎn)的距離是6故選B34.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C35.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓=1的一個(gè)焦點(diǎn)重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A36.下列命題中,錯(cuò)誤的是()

A.平行于同一條直線的兩個(gè)平面平行

B.平行于同一個(gè)平面的兩個(gè)平面平行

C.一個(gè)平面與兩個(gè)平行平面相交,交線平行

D.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交答案:A37.電視機(jī)的使用壽命顯像管開關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開關(guān)了10000次還能繼續(xù)使用的概率是0.96,開關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開關(guān)了10000次還能繼續(xù)使用”為事件A,記“開關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.38.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)39.已知|log12x+4i|≥5,則實(shí)數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實(shí)數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.40.若曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為______.答案:曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化簡為(x-2)2+(y-1)2=5,故為(x-2)2+(y-1)2=5.41.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B42.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>

1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.43.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個(gè)等于0答案:D44.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.45.已知圓O的兩弦AB和CD延長相交于E,過E點(diǎn)引EF∥CB交AD的延長線于F,過F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.46.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).47.從裝有兩個(gè)白球和兩個(gè)黃球的口袋中任取2個(gè)球,以下給出了三組事件:

①至少有1個(gè)白球與至少有1個(gè)黃球;

②至少有1個(gè)黃球與都是黃球;

③恰有1個(gè)白球與恰有1個(gè)黃球.

其中互斥而不對(duì)立的事件共有()組.

A.0

B.1

C.2

D.3答案:A48.已知拋物線x2=4y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.

(I)證明FM.AB為定值;

(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.49.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()

A.8

B.10

C.12

D.14答案:B50.拋物線y2=4x的焦點(diǎn)坐標(biāo)是()

A.(4,0)

B.(2,0)

C.(1,0)

D.答案:C第3卷一.綜合題(共50題)1.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對(duì)事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對(duì)立事件的有______(只填序號(hào)).答案:對(duì)于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時(shí)發(fā)生,而且它們的并事件是必然事件,故它們是對(duì)立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.故為③.2.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點(diǎn);

(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).3.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A4.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C5.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值時(shí)兩圓外切?

(2)m取何值時(shí)兩圓內(nèi)切?

(3)當(dāng)m=45時(shí),求兩圓的公共弦所在直線的方程和公共弦的長.答案:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長為211-4=27.6.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=37.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因?yàn)閦=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,3),所以位于第一象限.故選A.8.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)9.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)10.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是

______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).11.設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:“當(dāng)成立時(shí),總可推出成立”.那么,下列命題總成立的是A.若成立,則當(dāng)時(shí),均有成立B.若成立,則當(dāng)時(shí),均有成立C.若成立,則當(dāng)時(shí),均有成立D.若成立,則當(dāng)時(shí),均有成立答案:D解析:若成立,依題意則應(yīng)有當(dāng)時(shí),均有成立,故A不成立,若成立,依題意則應(yīng)有當(dāng)時(shí),均有成立,故B不成立,因命題“當(dāng)成立時(shí),總可推出成立”.“當(dāng)成立時(shí),總可推出成立”.因而若成立,則當(dāng)時(shí),均有成立,故C也不成立。對(duì)于D,事實(shí)上,依題意知當(dāng)時(shí),均有成立,故D成立。12.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(

A.

B.

C.

D.答案:C13.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C14.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()

A.變量x與y正相關(guān),u與v正相關(guān)

B.變量x與y正相關(guān),u與v負(fù)相關(guān)

C.變量x與y負(fù)相關(guān),u與v正相關(guān)

D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C15.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.16.對(duì)于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”現(xiàn)有四個(gè)函數(shù):

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對(duì)于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個(gè)解,即y=ex和y=x的圖象有兩個(gè)交點(diǎn),這與即y=ex和y=x的圖象沒有公共點(diǎn)相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對(duì)于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=x3∈[0,1].③對(duì)于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=sinπ2x∈[0,1].④對(duì)于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個(gè)解,即y=lnx

和y=x的圖象有兩個(gè)交點(diǎn),這與y=lnx和y=x的圖象沒有公共點(diǎn)相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.17.設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個(gè)端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:

①A、B、N三點(diǎn)共線;

②直線MN的方向向量可以為a=(0,1);

③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;

④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”.

其中所有正確結(jié)論的番號(hào)為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標(biāo)為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對(duì)于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”,故④成立,③不成立,故為:①②④18.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點(diǎn)P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:1019.在程序語言中,下列符號(hào)分別表示什么運(yùn)算*;\;∧;SQR;ABS?答案:“*”表示乘法運(yùn)算;“\”表示除法運(yùn)算;“∧”表示乘方運(yùn)算;“SQR()”表示求算術(shù)平方根運(yùn)算;“ABS()”表示求絕對(duì)值運(yùn)算.20.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對(duì)稱,則下列式子可以成立的是()

A.

B.

C.

D.答案:D21.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.22.已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.

(?。┣笞C:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(ⅰ)設(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(diǎn)(0,2)(10分)(ⅱ)由(ⅰ)知AB中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)23.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于24.已知F1、F2為橢圓x225+y216=1的左、右焦點(diǎn),若M為橢圓上一點(diǎn),且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點(diǎn)M有

()個(gè).A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點(diǎn),故滿足條件的點(diǎn)M有2個(gè),故選

C.25.已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C26.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.27.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為

______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個(gè)等式兩邊分別平方,再相加,即可消去含θ的項(xiàng),所以有(x-1)2+y2=4.28.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點(diǎn)O、半徑是a2+b2的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(2,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為3.

(1)求橢圓C和其“準(zhǔn)圓”的方程;

(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;

(3)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準(zhǔn)圓”的方程為x2+y2=4;(2)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設(shè)過點(diǎn)P且與橢圓相切的直線l的方程為my=x-2,聯(lián)立my=x-2x23+y2=1,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取點(diǎn)A(2,0).設(shè)點(diǎn)B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點(diǎn)B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)29.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D30.已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說法中:

①對(duì)于任意的θ,圓C1與圓C2始終相切;

②對(duì)于任意的θ,圓C1與圓C2始終有四條公切線;

③當(dāng)θ=π6時(shí),圓C1被直線l:3x-y-1=0截得的弦長為3;

④P,Q分別為圓C1與圓C2上的動(dòng)點(diǎn),則|PQ|的最大值為4.

其中正確命題的序號(hào)為

______.答案:①由圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,得到圓C1的圓心(2cosθ,2sinθ),半徑R=1;圓C2的圓心(0,0),半徑r=1,則兩圓心之間的距離d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以兩圓的位置關(guān)系是外切,此正確;②由①得兩圓外切,所以公切線的條數(shù)是3條,所以此錯(cuò)誤;③把θ=π6代入圓C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圓心(3,1)到直線l的距離d=|3-2|3+1=12,則圓被直線l截得的弦長=21-(12)2=3,所以此正確;④由兩圓外切得到|PQ|=2+2=4,此正確.綜上,正確的序號(hào)為:①③④.故為:①③④31.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論