版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年大連職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知直線過(guò)點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C2.若kxy-8x+9y-12=0表示兩條直線,則實(shí)數(shù)k的值及兩直線所成的角分別是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C3.不等式的解集是(
)
A.(-∞,-1)∪(-1,2]
B.[-1,2]
C.(-∞,-1)∪[2,+∞)
D.(-1,2]答案:D4.設(shè)拋物線y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,則實(shí)數(shù)x0的值是______.答案:∵點(diǎn)A(1,2)在拋物線y2=2px(p>0)上,∴4=2p,p=2,故拋物線方程為y2=4x,準(zhǔn)線方程為x=1.由點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,故點(diǎn)B(x0,0)為拋物線y2=4x的焦點(diǎn),故x0=1.故為1.5.過(guò)點(diǎn)(-3,-1),且與直線x-2y=0平行的直線方程為_(kāi)_____.答案:直線l經(jīng)過(guò)點(diǎn)(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.6.已知f(x)=2x,g(x)=3x.
(1)當(dāng)x為何值時(shí),f(x)=g(x)?
(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?
(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過(guò)點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.7.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒(méi)有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫(xiě)成“x=1或x=-1”,故選B.8.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C9.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.10.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.11.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].12.使關(guān)于的不等式有解的實(shí)數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。13.已知A,B兩點(diǎn)的極坐標(biāo)為(6,)和(8,),則線段AB中點(diǎn)的直角坐標(biāo)為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D14.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A15.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。16.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.17.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).18.已知點(diǎn)A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點(diǎn),則直線l在y軸上的截距的取值范圍是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A19.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.20.命題“當(dāng)AB=AC時(shí),△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題有______個(gè).答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時(shí),AB=AC”為假命題.否命題“當(dāng)AB≠AC時(shí),△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時(shí),AB≠AC”為真命題.故為:2.21.在極坐標(biāo)系中,點(diǎn)(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標(biāo)系中,點(diǎn)(2
,
π6)化為直角坐標(biāo)為(3,1),直線ρsinθ=2化為直角坐標(biāo)方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(diǎn)(2
,
π6)到直線ρsinθ=2的距離1,故為:1.22.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為_(kāi)_____.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.23.拋物線y2=4x的焦點(diǎn)坐標(biāo)為()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B24.用數(shù)學(xué)歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124
(n∈N,n≥1)答案:證明:(1)當(dāng)n=1時(shí),左邊=12>1124,∴n=1時(shí)成立(2分)(2)假設(shè)當(dāng)n=k(k≥1)時(shí)成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當(dāng)n=k+1時(shí),左邊=1k+2+1k+3+…+1k+k
+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1
+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時(shí)也成立(7分)根據(jù)(1)(2)可得不等式對(duì)所有的n≥1都成立(8分)25.設(shè)向量與的夾角為θ,,,則cosθ等于()
A.
B.
C.
D.答案:D26.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.27.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點(diǎn),且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C28.點(diǎn)(1,2)到原點(diǎn)的距離為()
A.1
B.5
C.
D.2答案:C29.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.30.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D31.平面向量、的夾角為60°,=(2,0),=1,則=(
)
A.
B.
C.3
D.7答案:B32.已知拋物線x2=4y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過(guò)A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫(xiě)出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過(guò)F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說(shuō)明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.33.在某電視歌曲大獎(jiǎng)賽中,最有六位選手爭(zhēng)奪一個(gè)特別獎(jiǎng),觀眾A,B,C,D猜測(cè)如下:A說(shuō):獲獎(jiǎng)的不是1號(hào)就是2號(hào);A說(shuō):獲獎(jiǎng)的不可能是3號(hào);C說(shuō):4號(hào)、5號(hào)、6號(hào)都不可能獲獎(jiǎng);D說(shuō):獲獎(jiǎng)的是4號(hào)、5號(hào)、6號(hào)中的一個(gè).比賽結(jié)果表明,四個(gè)人中恰好有一個(gè)人猜對(duì),則猜對(duì)者一定是觀眾
獲特別獎(jiǎng)的是
號(hào)選手.答案:C,3.解析:推理如下:因?yàn)橹挥幸蝗瞬聦?duì),而C與D互相否定,故C、D中一人猜對(duì)。假設(shè)D對(duì),則推出B也對(duì),與題設(shè)矛盾,故D猜錯(cuò),所以猜對(duì)者一定是C;于是B一定猜錯(cuò),故獲獎(jiǎng)?wù)呤?號(hào)選手(此時(shí)A錯(cuò)).34.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48035.設(shè)z∈C,|z|≤2,則點(diǎn)Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點(diǎn)Z表示的圖形是半徑為2的圓面,故選B36.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無(wú)理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.37.某射手射擊所得環(huán)數(shù)X的分布列為:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()
A.0.28
B.0.88
C.0.79
D.0.51答案:C38.
如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用
表示向量為(
)
A.
B.
C.
D.
答案:A39.已知拋物線和雙曲線都經(jīng)過(guò)點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點(diǎn)為F(1,0)由題意知雙曲線的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)∴c=1對(duì)于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.40.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個(gè)導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個(gè)焦點(diǎn)上,現(xiàn)有船只經(jīng)過(guò)該海域(船只的大小忽略不計(jì)),在船上測(cè)得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a41.下列輸入語(yǔ)句正確的是()
A.INPUT
x,y,z
B.INPUT“x=”;x,“y=”;y
C.INPUT
2,3,4
D.INPUT
x=2答案:A42.已知某試驗(yàn)范圍為[10,90],若用分?jǐn)?shù)法進(jìn)行4次優(yōu)選試驗(yàn),則第二次試點(diǎn)可以是(
)。答案:40或60(不唯一)43.(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語(yǔ)言寫(xiě)出算法;
(2)畫(huà)出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個(gè)數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個(gè)數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.44.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無(wú)法確定
答案:B45.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.46.無(wú)論m,n取何實(shí)數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過(guò)定點(diǎn)P,則P點(diǎn)坐標(biāo)為
A.(-1,3)
B.
C.
D.答案:D47.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.48.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)=±1答案:A49.已知橢圓的參數(shù)方程為(?為參數(shù)),點(diǎn)M在橢圓上,點(diǎn)O為原點(diǎn),則當(dāng)?=時(shí),OM的斜率為()
A.1
B.2
C.
D.2答案:D50.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B第2卷一.綜合題(共50題)1.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C2.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i3.一個(gè)長(zhǎng)方體共一頂點(diǎn)的三個(gè)面的面積分別是2、3、6,這個(gè)長(zhǎng)方體的體積是()A.6B.6C.32D.23答案:可設(shè)長(zhǎng)方體同一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個(gè)長(zhǎng)方體的體積是6故為B4.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B5.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點(diǎn),分別過(guò)A、B向x軸作垂線,若垂足恰為橢圓的兩個(gè)焦點(diǎn),則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡(jiǎn)整理得(3+4k2)x2=12(*)因?yàn)榉謩e過(guò)A、B向x軸作垂線,垂足恰為橢圓的兩個(gè)焦點(diǎn),故方程的兩個(gè)根為±1.代入方程(*),得k=±32故選A.6.若橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為47.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.8.某超市推出如下優(yōu)惠方案:
(1)一次性購(gòu)物不超過(guò)100元不享受優(yōu)惠;
(2)一次性購(gòu)物超過(guò)100元但不超過(guò)300元的一律九折;
(3)一次性購(gòu)物超過(guò)300元的一律八折,有人兩次購(gòu)物分別付款80元,252元.
如果他一次性購(gòu)買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購(gòu)物付款80元,據(jù)條件(1)、(2)知他沒(méi)有享受優(yōu)惠,故實(shí)際購(gòu)物款為80元;另一次購(gòu)物付款252元,有兩種可能,其一購(gòu)物超過(guò)300元按八折計(jì),則實(shí)際購(gòu)物款為2520.8=315元.其二購(gòu)物超過(guò)100元但不超過(guò)300元按九折計(jì)算,則實(shí)際購(gòu)物款為2520.9=280元.故該人兩次購(gòu)物總價(jià)值為395元或360元,若一次性購(gòu)買這些商品應(yīng)付款316元或288元.故為316元或288元.9.雙曲線的實(shí)軸長(zhǎng)和焦距分別為()
A.
B.
C.
D.答案:C10.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:311.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長(zhǎng)線相交于點(diǎn)E,連接CE并延長(zhǎng)交圓O于點(diǎn)F,連接AF.
(1)求證:B,C,E,D四點(diǎn)共圓;
(2)當(dāng)AB=12,tan∠EAF=23時(shí),求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽R(shí)t△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點(diǎn)共圓
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.12.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C13.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.14.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D15.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)16.將直線y=x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A17.(理)
設(shè)O為坐標(biāo)原點(diǎn),向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)QA?QB取得最小值時(shí),點(diǎn)Q的坐標(biāo)為_(kāi)_____.答案:∵OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時(shí),QA?QB取得最小值.此時(shí)Q的坐標(biāo)為(43,43,83)故為:(43,43,83)18.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線,則x的值是()
A.5
B.6
C.7
D.8答案:C19.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.20.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長(zhǎng)度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)21.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為_(kāi)_____.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3522.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,求實(shí)數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.23.若直線y=x+b與圓x2+y2=2相切,則b的值為
______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.24.將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,0003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個(gè)部分.如果第一部分編號(hào)為0001,0002,…,0020,從中隨機(jī)抽取一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為_(kāi)_____.答案:∵系統(tǒng)抽樣是先將總體按樣本容量分成k=Nn段,再間隔k取一個(gè).又∵現(xiàn)在總體的個(gè)體數(shù)為1000,樣本容量為50,∴k=20∴若第一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為0015+20×39=0795故為079525.設(shè)過(guò)點(diǎn)A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點(diǎn),
(1)設(shè)直線l的傾斜角為α,寫(xiě)出直線l的參數(shù)方程;
(2)設(shè)P是BC的中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線的參數(shù)方程代入拋物線方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點(diǎn)對(duì)應(yīng)的參數(shù)為t1,t2,其中點(diǎn)P的坐標(biāo)為(x,y),則點(diǎn)P所對(duì)應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時(shí),應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時(shí),P與A重合,這時(shí)P點(diǎn)的坐標(biāo)為(p,0),也是方程的解綜上,P點(diǎn)的軌跡方程為y2=px-p226.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來(lái)解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.27.如圖給出的是計(jì)算1+13+15+…+12013的值的一個(gè)程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長(zhǎng)為2,故執(zhí)行框中應(yīng)該填的語(yǔ)句是:i=i+2.故為:i+2.28.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)29.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個(gè)事件均互斥
D.任意兩個(gè)事件均不互斥答案:B30.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B31.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選
C.32.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)33.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過(guò)點(diǎn)(1,)
B.拋物線的一部分,這部分過(guò)(1,)
C.雙曲線的一支,這支過(guò)點(diǎn)(-1,)
D.拋物線的一部分,這部分過(guò)(-1,)答案:B34.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.35.設(shè)方程lgx+x=3的實(shí)數(shù)根為x0,則x0所在的一個(gè)區(qū)間是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分別畫(huà)出等式:lgx=3-x兩邊對(duì)應(yīng)的函數(shù)圖象:如圖.由圖知:它們的交點(diǎn)x0在區(qū)間(2,3)內(nèi),故選B.36.經(jīng)過(guò)點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x37.對(duì)某種花卉的開(kāi)放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為_(kāi)_____天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1638.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點(diǎn)B都落在邊AD上,將B的落點(diǎn)記為B′,其中EF為折痕,點(diǎn)F也可落在邊CD上,過(guò)B′作B′H∥CD交EF于點(diǎn)H,則點(diǎn)H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點(diǎn)H到定點(diǎn)B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點(diǎn)H的軌跡為:拋物線,(拋物線的一部分)故選D.39.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.40.某科目考試有30道題每小題有三個(gè)選項(xiàng),每題2分,另有20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè)答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個(gè)選項(xiàng),每題2分,每題只有一個(gè),某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè),某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.41.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是[
]
A.4
B.-4
C.-5
D.6答案:A42.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當(dāng)n=1,2,3,4時(shí),比較f(n)與g(n)的大?。?/p>
(2)根據(jù)(1)的結(jié)果猜測(cè)一個(gè)一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.43.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P
F1F2的面積為()
A.
B.1
C.2
D.4答案:B44.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.45.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()
A.互斥事件
B.對(duì)立事件
C.不是互斥事件
D.前者都不對(duì)答案:D46.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B47.若不等式logax>sin2x(a>0,a≠1)對(duì)任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過(guò)點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.48.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長(zhǎng)______.答案:設(shè)另一弦長(zhǎng)xcm;由于另一弦被分為3:8的兩段,故兩段的長(zhǎng)分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm49.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是()
A.
B.
C.
D.
答案:A50.在下面的圖示中,結(jié)構(gòu)圖是()
A.
B.
C.
D.
答案:B第3卷一.綜合題(共50題)1.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A2.下列命題:
①用相關(guān)系數(shù)r來(lái)刻畫(huà)回歸的效果時(shí),r的值越大,說(shuō)明模型擬合的效果越好;
②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;
其中正確命題的序號(hào)是
______.(寫(xiě)出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說(shuō)明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③3.直線kx-y=k-1與直線ky=x+2k的交點(diǎn)在第二象限內(nèi),則k的取值范圍是
______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當(dāng)k+1≠0即k≠-1時(shí),解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點(diǎn)坐標(biāo)為(kk-1,2k-1k-1)因?yàn)橹本€kx-y=k-1與直線ky=x+2k的交點(diǎn)在第二象限內(nèi),得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<124.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點(diǎn)到原點(diǎn)的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點(diǎn)到直線2x+y+5=0的距離,d=522+1=5.故選A.5.一個(gè)正三棱錐的底面邊長(zhǎng)等于一個(gè)球的半徑,該正三棱錐的高等于這個(gè)球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A6.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)7.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯(cuò)
B.結(jié)論錯(cuò)
C.正確的
D.大前提錯(cuò)答案:C8.圓柱的底面積為S,側(cè)面展開(kāi)圖為正方形,那么這個(gè)圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長(zhǎng)是l,∵圓柱的底面積為S,側(cè)面展開(kāi)圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.9.(x3+1xx)10的展開(kāi)式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開(kāi)式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.10.直線l經(jīng)過(guò)點(diǎn)A(2,-1)和點(diǎn)B(-1,5),其斜率為()
A.-2
B.2
C.-3
D.3答案:A11.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞?jì)算方便不妨設(shè)a=1.(1)證明:根據(jù)題意可得:以A為原點(diǎn),AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過(guò)E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.12.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.13.某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開(kāi)的可能性為,隨機(jī)變量ξ表示同時(shí)被打開(kāi)的水龍頭的個(gè)數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨(dú)立重復(fù)試驗(yàn)中,恰好發(fā)生k次的概率.對(duì)5個(gè)水龍頭的處理可視為做5次試驗(yàn),每次試驗(yàn)有2種可能結(jié)果:打開(kāi)或未打開(kāi),相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.14.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn),求證:AB2=BE·CD。
答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)?,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。15.若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是R,所以四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.故為:13R(S1+S2+S3+S4).16.從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒(méi)有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個(gè)數(shù)為()
A.432
B.288
C.216
D.108答案:C17.袋子里有大小相同的3個(gè)紅球和4個(gè)黑球,今從袋子里隨機(jī)取球.
(Ⅰ)若有放回地取3次,每次取1個(gè)球,求取出1個(gè)紅球2個(gè)黑球的概率;
(Ⅱ)若無(wú)放回地取3次,每次取1個(gè)球,
①求在前2次都取出紅球的條件下,第3次取出黑球的概率;
②求取出的紅球數(shù)X
的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個(gè)紅球2個(gè)黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;
所以取出1個(gè)紅球2個(gè)黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機(jī)變量X
的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.18.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)19.已知雙曲線的兩條準(zhǔn)線將兩焦點(diǎn)間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.20.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對(duì)總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.21.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書(shū)里提出了這樣的一個(gè)問(wèn)題:一對(duì)兔子飼養(yǎng)到第二個(gè)月進(jìn)入成年,第三個(gè)月生一對(duì)小兔,以后每個(gè)月生一對(duì)小兔,所生小兔能全部存活并且也是第二個(gè)月成年,第三個(gè)月生一對(duì)小兔,以后每月生一對(duì)小兔.問(wèn)這樣下去到年底應(yīng)有多少對(duì)兔子?試畫(huà)出解決此問(wèn)題的程序框圖,并編寫(xiě)相應(yīng)的程序.答案:見(jiàn)解析解析:解:根據(jù)題意可知,第一個(gè)月有對(duì)小兔,第二個(gè)月有對(duì)成年兔子,第三個(gè)月有兩對(duì)兔子,從第三個(gè)月開(kāi)始,每個(gè)月的兔子對(duì)數(shù)是前面兩個(gè)月兔子對(duì)數(shù)的和,設(shè)第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,則有,一個(gè)月后,即第個(gè)月時(shí),式中變量的新值應(yīng)變第個(gè)月兔子的對(duì)數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€(gè)月兔子的對(duì)數(shù)(的舊值),這樣,用求出變量的新值就是個(gè)月兔子的數(shù),依此類推,可以得到一個(gè)數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對(duì)數(shù),我們可以先確定前兩個(gè)月的兔子對(duì)數(shù)均為,以此為基準(zhǔn),構(gòu)造一個(gè)循環(huán)程序,讓表示“第×個(gè)月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND22.直線y=2x+1的參數(shù)方程是()
A.(t為參數(shù))
B.(t為參數(shù))
C.(t為參數(shù))
D.(θ為參數(shù))
答案:B23.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長(zhǎng)交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.24.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為425.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B26.直線y=1與直線y=3x+3的夾角為_(kāi)_____答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°27.已知|OA|=1,|OB|=3,OA?OB=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12
|OC
|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:328.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.29.某公司招聘員工,經(jīng)過(guò)筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.30.若直線l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(
)
A.點(diǎn)在圓上
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓外
D.不能確定答案:C31.如果一個(gè)圓錐的正視圖是邊長(zhǎng)為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個(gè)圓錐的表面積是12×2π×2+π?12=3π.故:3π.32.下列賦值語(yǔ)句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C33.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- PEP人教版小學(xué)四年級(jí)上冊(cè)Unit 1 My classroom PartC Story time課件
- 農(nóng)村個(gè)人房屋買賣合同協(xié)議書(shū)范本
- (立項(xiàng)備案方案)椰雕項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 古代建筑行業(yè)中的追蹤和定位- 王姣27課件講解
- 山東省菏澤市鄆城縣第一中學(xué)2023-2024學(xué)年七年級(jí)上學(xué)期第一次月考生物試題(解析版)-A4
- 湖南省婁底市新化縣2024-2025學(xué)年八年級(jí)上學(xué)期12月月考道德與法治試題-A4
- 獸醫(yī)寄生蟲(chóng)題庫(kù)與參考答案
- 養(yǎng)老院老人心理關(guān)愛(ài)制度
- 養(yǎng)老院老人緊急救援人員職業(yè)道德制度
- 房屋建筑項(xiàng)目工程總承包合同(2篇)
- 1937年南京大屠殺
- 工程倫理智慧樹(shù)知到期末考試答案2024年
- 2024廣西能源集團(tuán)有限公司社會(huì)招聘筆試參考題庫(kù)附帶答案詳解
- 西游記第一回
- 設(shè)備維保的備品備件與庫(kù)存管理
- 醫(yī)院導(dǎo)醫(yī)個(gè)人工作總結(jié)
- 建筑工地塌陷應(yīng)急預(yù)案
- 南京財(cái)經(jīng)大學(xué)計(jì)算機(jī)網(wǎng)絡(luò)基礎(chǔ)期末考題及答案
- 社區(qū)電動(dòng)車棚新(擴(kuò))建及修建充電車棚施工方案(純方案-)
- 2023珠寶消費(fèi)趨勢(shì)調(diào)查報(bào)告-周大福-202403
- 2016-2023年湖南外貿(mào)職業(yè)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
評(píng)論
0/150
提交評(píng)論