2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年武漢鐵路橋梁職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。2.O、A、B、C為空間四個(gè)點(diǎn),又為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D3.(本題10分)設(shè)函數(shù)的定義域?yàn)锳,的定義域?yàn)锽.(1)求A;

(2)若,求實(shí)數(shù)a的取值范圍答案:(1);(2)。解析:略4.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=35.設(shè)有三個(gè)命題:“①0<12<1.②函數(shù)f(x)=log

12x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是______(填序號(hào)).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log

12x是減函數(shù).其“小前提”是①.故為:①.6.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為12257.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.8.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.9.已知一直線斜率為3,且過A(3,4),B(x,7)兩點(diǎn),則x的值為()

A.4

B.12

C.-6

D.3答案:A10.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.11.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.12.1

甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為

(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;

(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.答案:見解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺(tái)機(jī)床各自加工的零件是一等品的事件①②③13.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.14.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45015.如圖是一個(gè)方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時(shí)以每一分鐘一格的速度向東、西、南、北四個(gè)方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個(gè)方向行走的概率均為q

(1)p和q的值;

(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時(shí)間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)

設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230416.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A17.小李在一旅游景區(qū)附近租下一個(gè)小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進(jìn)貨價(jià)為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進(jìn)貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個(gè)頂點(diǎn)坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時(shí)取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時(shí),z取最大值即進(jìn)50件T恤,12件紀(jì)念品時(shí),可獲最大利潤,最大利潤為1140元.18.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.19.已知正方形ABCD的邊長為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D20.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(

A.線段

B.雙曲線的一支

C.圓

D.射線答案:D21.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個(gè)導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個(gè)焦點(diǎn)上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計(jì)),在船上測得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a22.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12423.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號(hào)知若y=ax遞增,則y=x+a與y軸的交點(diǎn)在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點(diǎn)在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.24.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)25.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}26.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點(diǎn),∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點(diǎn)∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點(diǎn)P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點(diǎn)ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°27.某種燈泡的耐用時(shí)間超過1000小時(shí)的概率為0.2,有3個(gè)相互獨(dú)立的燈泡在使用1000小時(shí)以后,最多只有1個(gè)損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D28.在△ABC中,=,=,且=2,則等于()

A.+

B.+

C.+

D.+答案:A29.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.30.命題“三角形中最多只有一個(gè)內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個(gè)內(nèi)角是直角

B.有三個(gè)內(nèi)角是直角

C.至少有兩個(gè)內(nèi)角是直角

D.沒有一個(gè)內(nèi)角是直角答案:C31.設(shè)a,b,λ都為正數(shù),且a≠b,對(duì)于函數(shù)y=x2(x>0)圖象上兩點(diǎn)A(a,a2),B(b,b2).

(1)若AC=λCB,則點(diǎn)C的坐標(biāo)是______;

(2)過點(diǎn)C作x軸的垂線,交函數(shù)y=x2(x>0)的圖象于D點(diǎn),由點(diǎn)C在點(diǎn)D的上方可得不等式:______.答案:(1)設(shè)點(diǎn)C(x,y),因?yàn)辄c(diǎn)A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因?yàn)辄c(diǎn)C在點(diǎn)D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)232.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時(shí),由已知得原式成立;(2)假設(shè)當(dāng)n=k時(shí),原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時(shí),原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.33.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時(shí),f(x)=g(x)?

(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.34.某年級(jí)共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績?nèi)缦拢?/p>

成績(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點(diǎn)估計(jì)值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.35.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則根據(jù)橢圓的對(duì)稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對(duì)的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.36.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C37.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()

A.是銳角三角形

B.是直角三角形

C.是鈍角三角形

D.不存在答案:B38.已知實(shí)數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線的距離公式得點(diǎn)P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.39.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.40.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A41.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個(gè)命題中正確的是()

A.若α1<α2,則兩直線斜率k1<k2

B.若α1=α2,則兩直線斜率k1=k2

C.若兩直線斜率k1<k2,則α1<α2

D.若兩直線斜率k1=k2,則α1=α2答案:D42.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()

A.()

B.()

C.()

D.()答案:D43.當(dāng)x∈N+時(shí),用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時(shí),(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.44.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.45.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C46.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點(diǎn)到原點(diǎn)的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點(diǎn)到直線2x+y+5=0的距離,d=522+1=5.故選A.47.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A48.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π649.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A50.已知隨機(jī)變量ξ服從正態(tài)分布N(2,a2),且P(ξ<4)=0.8,則P(0<ξ<2)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:C第2卷一.綜合題(共50題)1.(上海卷理3文8)動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點(diǎn)P的軌跡是以F為焦點(diǎn)的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x2.參數(shù)方程表示什么曲線?答案:見解析解析:解:顯然,則即得,即3.若隨機(jī)變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:3164.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是()

A.a(chǎn)、b至少有一個(gè)不為0

B.a(chǎn)、b至少有一個(gè)為0

C.a(chǎn)、b全不為0

D.a(chǎn)、b中只有一個(gè)為0答案:A5.如圖,從圓O外一點(diǎn)A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.6.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.7.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D8.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時(shí),S=2,n=2;當(dāng)n=2時(shí),S=6,n=3;當(dāng)n=3時(shí),S=14,n=4;當(dāng)n=4時(shí),S=30,n=5;故最后輸出的n值為5故為:59.下面程序運(yùn)行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C10.在參數(shù)方程所表示的曲線上有B、C兩點(diǎn),它們對(duì)應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點(diǎn)M對(duì)應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B11.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B12.若曲線C的極坐標(biāo)方程為

ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y13.圖為一個(gè)幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C14.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B15.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.16.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.17.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為718.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B19.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send20.已知雙曲線的a=5,c=7,則該雙曲線的標(biāo)準(zhǔn)方程為()

A.-=1

B.-=1

C.-=1或-=1

D.-=0或-=0答案:C21.口袋中裝有三個(gè)編號(hào)分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號(hào)后放回,連續(xù)取球兩次.則“兩次取球中有3號(hào)球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號(hào)球的概率為13,則兩次取得球都是3號(hào)求得概率為C22?(13)2=19,兩次取得球只有一次取得3號(hào)求得概率為C12?13?23=49,故“兩次取球中有3號(hào)球”的概率為19+49=59,故選A.22.方程ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C23.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.24.兩個(gè)正方體M1、M2,棱長分別a、b,則對(duì)于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()

A.兩個(gè)球

B.兩個(gè)長方體

C.兩個(gè)圓柱

D.兩個(gè)圓錐答案:A25.在某電視歌曲大獎(jiǎng)賽中,最有六位選手爭奪一個(gè)特別獎(jiǎng),觀眾A,B,C,D猜測如下:A說:獲獎(jiǎng)的不是1號(hào)就是2號(hào);A說:獲獎(jiǎng)的不可能是3號(hào);C說:4號(hào)、5號(hào)、6號(hào)都不可能獲獎(jiǎng);D說:獲獎(jiǎng)的是4號(hào)、5號(hào)、6號(hào)中的一個(gè).比賽結(jié)果表明,四個(gè)人中恰好有一個(gè)人猜對(duì),則猜對(duì)者一定是觀眾

獲特別獎(jiǎng)的是

號(hào)選手.答案:C,3.解析:推理如下:因?yàn)橹挥幸蝗瞬聦?duì),而C與D互相否定,故C、D中一人猜對(duì)。假設(shè)D對(duì),則推出B也對(duì),與題設(shè)矛盾,故D猜錯(cuò),所以猜對(duì)者一定是C;于是B一定猜錯(cuò),故獲獎(jiǎng)?wù)呤?號(hào)選手(此時(shí)A錯(cuò)).26.將3封信投入5個(gè)郵筒,不同的投法共有()

A.15

B.35

C.6

D.53種答案:D27.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開始向右讀,請(qǐng)你依次寫出最先檢測的4顆種子的編號(hào)______,______,______,______.

(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列數(shù)字為1,故產(chǎn)生的第一個(gè)數(shù)字為:169,第二個(gè)數(shù)字為:555,第三個(gè)數(shù)字為:671,第四個(gè)數(shù)字為:998(超出編號(hào)范圍舍)第五個(gè)數(shù)字為:105故為:169,555,671,10528.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.29.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200630.橢圓上有一點(diǎn)P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),△F1PF2為直角三角形,則這樣的點(diǎn)P有()

A.3個(gè)

B.4個(gè)

C.6個(gè)

D.8個(gè)答案:C31.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對(duì)任意的x∈R,2x≤0

D.對(duì)任意的x∈R,2x>0答案:D32.函數(shù)f(x)=2|log2x|的圖象大致是()

A.

B.

C.

D.

答案:C33.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.34.直線(t為參數(shù))的傾斜角是()

A.20°

B.70°

C.45°

D.135°答案:D35.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,A中的2個(gè)函數(shù)的值域不同,B中的2個(gè)函數(shù)的定義域不同,C中的2個(gè)函數(shù)的對(duì)應(yīng)關(guān)系不同,只有D的2個(gè)函數(shù)的定義域、值域、對(duì)應(yīng)關(guān)系完全相同,故選D.36.直線的參數(shù)方程為,l上的點(diǎn)P1對(duì)應(yīng)的參數(shù)是t1,則點(diǎn)P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C37.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.38.下列給變量賦值的語句正確的是()

A.5=a

B.a(chǎn)+2=a

C.a(chǎn)=b=4

D.a(chǎn)=2*a答案:D39.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR240.設(shè)二項(xiàng)式(33x+1x)n的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對(duì)于二項(xiàng)式(33x+1x)n的展開式的所有二項(xiàng)式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項(xiàng)系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.41.籃球運(yùn)動(dòng)員在比賽中每次罰球命中得1分,罰不中得0分.已知某運(yùn)動(dòng)員罰球命中的概率為0.7,求

(1)他罰球1次的得分X的數(shù)學(xué)期望;

(2)他罰球2次的得分Y的數(shù)學(xué)期望;

(3)他罰球3次的得分η的數(shù)學(xué)期望.答案:(1)X的取值為1,2,則因?yàn)镻(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.42.設(shè)A(3,4),在x軸上有一點(diǎn)P(x,0),使得|PA|=5,則x等于()

A.0

B.6

C.0或6

D.0或-6答案:C43.某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個(gè)人中間,三個(gè)人有兩個(gè)中間位置和兩個(gè)兩邊位置就是將空位分為四部分,五個(gè)空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個(gè)位置就可以有四種方法,另外三個(gè)人排列A33=6根據(jù)分步計(jì)數(shù)可得共有4×6=24故選C.44.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A45.下列函數(shù)圖象中,正確的是()

A.

B.

C.

D.

答案:C46.若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k2=4.013,那么有()把握認(rèn)為兩個(gè)變量有關(guān)系.

A.95%

B.97.5%

C.99%

D.99.9%答案:A47.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.48.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.49.中,是邊上的中線(如圖).

求證:.

答案:證明見解析解析:取線段所在的直線為軸,點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為.可得,,,.,..50.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C第3卷一.綜合題(共50題)1.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B2.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A3.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B4.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因?yàn)锳∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D5.過點(diǎn)P(0,-2)的雙曲線C的一個(gè)焦點(diǎn)與拋物線x2=-16y的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是()

A.

B.

C.

D.答案:C6.設(shè)a=0.7,b=0.8,c=log30.7,則()

A.c<b<a

B.c<a<b

C.a(chǎn)<b<c

D.b<a<c答案:B7.在投擲兩枚硬幣的隨機(jī)試驗(yàn)中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()

A.既是互斥事件又是對(duì)立事件

B.是對(duì)立事件而非互斥事件

C.既非互斥事件也非對(duì)立事件

D.是互斥事件而非對(duì)立事件答案:D8.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C9.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C10.設(shè)集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點(diǎn),點(diǎn)的橫坐標(biāo),縱坐標(biāo)都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.11.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B12.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()

A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)

D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A13.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項(xiàng)式展開式的通項(xiàng)為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B14.已知G是△ABC的重心,過G的一條直線交AB、AC兩點(diǎn)分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為315.拋物線y=3x2的焦點(diǎn)坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=

112,∴焦點(diǎn)坐標(biāo)是(0,112).故為(0,112)16.在邊長為1的正方形中,有一個(gè)封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)的撒入100粒豆子,恰有60粒落在陰影區(qū)域內(nèi),那么陰影區(qū)域的面積為______.

答案:設(shè)陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.17.用0、1、2、3、4、5這6個(gè)數(shù)字,可以組成無重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)為______(用數(shù)字作答).答案:末尾是0時(shí),有A55=120種;末尾不是0時(shí),有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31218.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動(dòng)點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u(píng)=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.19.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對(duì)任意x∈Z使x2+2x+m≤0

D.對(duì)任意x∈Z使x2+2x+m>0答案:D20.直線過原點(diǎn)且傾角的正弦值是45,則直線方程為______.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x21.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個(gè)法向量為()

A.(2,-1)

B.(1,-2)

C.(2,1)

D.(1,2)答案:D22.函數(shù)y=2x的值域?yàn)開_____.答案:因?yàn)椋簒≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域?yàn)椋篬1,+∞).故為:[1,+∞).23.在某路段檢測點(diǎn)對(duì)200輛汽車的車速進(jìn)行檢測,檢測結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.24.用演繹法證明y=x2是增函數(shù)時(shí)的大前提是______.答案:∵證明y=x2是增函數(shù)時(shí),依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時(shí)的大前提是:增函數(shù)的定義故填增函數(shù)的定義25.如圖所示,已知A、B、C三點(diǎn)不共線,O為平面ABC外的一點(diǎn),若點(diǎn)M滿足

(1)判斷三個(gè)向量是否共面;

(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),26.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()

A.

B.

C.

D.

答案:D27.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D28.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A29.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B30.已知函數(shù)f(x)=x+3x+1(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用數(shù)學(xué)歸納法證明bn≤(3-1)n2n-1;

(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當(dāng)x≥0時(shí),f(x)=1+2x+1≥1.因?yàn)閍1=1,所以an≥1(n∈N*).下面用數(shù)學(xué)歸納法證明不等式bn≤(3-1)n2n-1.(1)當(dāng)n=1時(shí),b1=3-1,不等式成立,(2)假設(shè)當(dāng)n=k時(shí),不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當(dāng)n=k+1時(shí),不等式也成立.根據(jù)(1)和(2),可知不等式對(duì)任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對(duì)任意n∈N*,Sn<233.31.極坐標(biāo)方程ρcos2θ=0表示的曲線為()

A.極點(diǎn)

B.極軸

C.一條直線

D.兩條相交直線答案:D32.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.

(Ⅰ)分別求ξ和η的期望;

(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)33.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.34.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c35.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論