版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列圖形是由同樣大小的棋子按照一定規(guī)律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.502.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④3.如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°4.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°5.如圖是一次數(shù)學活動課制作的一個轉(zhuǎn)盤,盤面被等分成四個扇形區(qū)域,并分別標有數(shù)字-1,0,1,2.若轉(zhuǎn)動轉(zhuǎn)盤兩次,每次轉(zhuǎn)盤停止后記錄指針所指區(qū)域的數(shù)字(當指針恰好指在分界線上時,不記,重轉(zhuǎn)),則記錄的兩個數(shù)字都是正數(shù)的概率為()A. B. C. D.6.一次函數(shù)y=2x+1的圖像不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限7.今年我市計劃擴大城區(qū)綠地面積,現(xiàn)有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設(shè)擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16008.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<79.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是()A. B. C. D.10.方程的解是A.3 B.2 C.1 D.0二、填空題(共7小題,每小題3分,滿分21分)11.16的算術(shù)平方根是.12.如果不等式組的解集是x<2,那么m的取值范圍是_____13.如圖,在平面直角坐標系中,點A和點C分別在y軸和x軸正半軸上,以O(shè)A、OC為邊作矩形OABC,雙曲線(>0)交AB于點E,AE︰EB=1︰3.則矩形OABC的面積是__________.14.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()15.如圖,要使△ABC∽△ACD,需補充的條件是_____.(只要寫出一種)16.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.17.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數(shù)字和都相等,若填在圖中的數(shù)字如圖所示,則x+y的值是_____.2x32y﹣34y三、解答題(共7小題,滿分69分)18.(10分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.19.(5分)某高中學校為高一新生設(shè)計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質(zhì)及其厚度等暫忽略不計).20.(8分)隨著高鐵的建設(shè),春運期間動車組發(fā)送旅客量越來越大,相關(guān)部門為了進一步了解春運期間動車組發(fā)送旅客量的變化情況,針對2014年至2018年春運期間的鐵路發(fā)送旅客量情況進行了調(diào)查,過程如下.(Ⅰ)收集、整理數(shù)據(jù)請將表格補充完整:(Ⅱ)描述數(shù)據(jù)為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用什么圖(回答“折線圖”或“扇形圖”)進行描述;(Ⅲ)分析數(shù)據(jù)、做出推測預估2019年春運期間動車組發(fā)送旅客量占比約為多少,說明你的預估理由.21.(10分)在平面直角坐標系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.22.(10分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關(guān)系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.23.(12分)綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.24.(14分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)題意得出第n個圖形中棋子數(shù)為1+2+3+…+n+1+2n,據(jù)此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規(guī)律,通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.2、B【解析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.3、B【解析】
利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據(jù)三角形外角性質(zhì)得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進行計算即可.【詳解】解:連結(jié)OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,
∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點睛】本題考查了圓的認識:掌握與圓有關(guān)的概念(
弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質(zhì).4、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質(zhì).利用兩直線平行,同位角相等是解此題的關(guān)鍵.5、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結(jié)果,兩個數(shù)都為正數(shù)的結(jié)果有4種,所以兩個數(shù)都為正數(shù)的概率為,故選C.考點:用列表法(或樹形圖法)求概率.6、D【解析】
根據(jù)一次函數(shù)的系數(shù)判斷出函數(shù)圖象所經(jīng)過的象限,由k=2>0,b=1>0可知,一次函數(shù)y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數(shù)圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據(jù)一次函數(shù)圖象的性質(zhì)即可判斷該函數(shù)圖象經(jīng)過一、二、三象限,不經(jīng)過第四象限.故選D.【點睛】本題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解決此類題目的關(guān)鍵是確定k、b的正負.7、A【解析】試題分析:根據(jù)題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據(jù)長方形的面積計算法則列出方程.考點:一元二次方程的應用.8、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.9、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.10、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
正數(shù)的正的平方根叫算術(shù)平方根,0的算術(shù)平方根還是0;負數(shù)沒有平方根也沒有算術(shù)平方根∵∴16的平方根為4和-4∴16的算術(shù)平方根為412、m≥1.【解析】分析:先解第一個不等式,再根據(jù)不等式組的解集是x<1,從而得出關(guān)于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.13、1【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征設(shè)E點坐標為(t,),則利用AE:EB=1:3,B點坐標可表示為(4t,),然后根據(jù)矩形面積公式計算.【詳解】設(shè)E點坐標為(t,),
∵AE:EB=1:3,
∴B點坐標為(4t,),
∴矩形OABC的面積=4t?=1.
故答案是:1.【點睛】考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.14、C【解析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對應邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.15、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】試題分析:∵∠DAC=∠CAB∴當∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB時,△ABC∽△ACD.故答案為∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考點:1.相似三角形的判定;2.開放型.16、2.【解析】
把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關(guān)鍵是能求出2m2﹣3m=2.17、0【解析】
根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果.【詳解】解:根據(jù)題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0【點睛】此題考查了解二元一次方程組,熟練掌握運算法則是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、4【解析】
已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.19、44cm【解析】解:如圖,設(shè)BM與AD相交于點H,CN與AD相交于點G,由題意得,MH=8cm,BH=40cm,則BM=32cm,∵四邊形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:橫梁EF應為44cm.根據(jù)等腰梯形的性質(zhì),可得AH=DG,EM=NF,先求出AH、GD的長度,再由△BEM∽△BAH,可得出EM,繼而得出EF的長度.20、(Ⅰ)見表格;(Ⅱ)折線圖;(Ⅲ)60%、之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預測2019年增加的百分比接近3%.【解析】
(Ⅰ)根據(jù)百分比的意義解答可得;(Ⅱ)根據(jù)折線圖和扇形圖的特點選擇即可得;(Ⅲ)根據(jù)之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預測2019年增加的百分比接近3%.【詳解】(Ⅰ)年份20142015201620172018動車組發(fā)送旅客量a億人次0.871.141.461.802.17鐵路發(fā)送旅客總量b億人次2.522.763.073.423.82動車組發(fā)送旅客量占比×10034.5%41.3%47.6%52.6%56.8%(Ⅱ)為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用折線圖進行描述,故答案為折線圖;(Ⅲ)預估2019年春運期間動車組發(fā)送旅客量占比約為60%,預估理由是之前每年增加的百分比依次為7%、6%、5%、4%,據(jù)此預測2019年增加的百分比接近3%.【點睛】本題考查了統(tǒng)計圖的選擇,根據(jù)統(tǒng)計圖的特點正確選擇統(tǒng)計圖是解題的關(guān)鍵.21、(1)①3,1;②最小值為3;(1)【解析】
(1)①根據(jù)點Q與點P之間的“直距”的定義計算即可;②如圖3中,由題意,當DCO為定值時,點C的軌跡是以點O為中心的正方形(如左邊圖),當DCO=3時,該正方形的一邊與直線y=-x+3重合(如右邊圖),此時DCO定值最小,最小值為3;(1)如圖4中,平移直線y=1x+4,當平移后的直線與⊙O在左邊相切時,設(shè)切點為E,作EF∥x軸交直線y=1x+4于F,此時DEF定值最?。弧驹斀狻拷猓海?)①如圖1中,觀察圖象可知DAO=1+1=3,DBO=1,故答案為3,1.②(i)當點C在第一象限時(),根據(jù)題意可知,為定值,設(shè)點C坐標為,則,即此時為3;(ii)當點C在坐標軸上時(,),易得為3;(ⅲ)當點C在第二象限時(),可得;(ⅳ)當點C在第四象限時(),可得;綜上所述,當時,取得最小值為3;(1)如解圖②,可知點F有兩種情形,即過點E分別作y軸、x軸的垂線與直線分別交于、;如解圖③,平移直線使平移后的直線與相切,平移后的直線與x軸交于點G,設(shè)直線與x軸交于點M,與y軸交于點N,觀察圖象,此時即為點E與點F之間“直距”的最小值.連接OE,易證,∴,在中由勾股定理得,∴,解得,∴.【點睛】本題考查一次函數(shù)的綜合題,點Q與點P之間的“直距”的定義,圓的有關(guān)知識,正方形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學會利用新的定義,解決問題,屬于中考壓軸題.失分原因第(1)問(1)不能根據(jù)定義找出AO、BO的“直距”分屬哪種情形;(1)不能找出點C在不同位置時,的取值情況,并找到的最小值第(1)問(1)不能根據(jù)定義正確找出點E與點F之間“直距”取最小值時點E、F的位置;(1)不能想到由相似求出GO的值22、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】
(1)、根據(jù)利潤=(售價-進價)×數(shù)量-固定支出列出函數(shù)表達式;(2)、根據(jù)題意得出不等式,從而得出答案;(2)、根據(jù)題意得出函數(shù)關(guān)系式,然后將y=1560代入函數(shù)解析式,從而求出x的值得出答案.【詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價x(元)取整數(shù),∴每份套餐的售價應不低于9元.(2)依題意可知:每份套餐售價提高到10元以上時,y=(x﹣5)[400﹣40(x﹣10)]﹣2,當y=1560時,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應取x1=11,即x2=14不符合題意.故該套餐售價應定為11元.【點睛】本題主要考查的是一次函數(shù)和二次函數(shù)的實際應用問題,屬于中等難度的題型.理解題意,列出關(guān)系式是解決這個問題的關(guān)鍵.23、(1)補全統(tǒng)計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;(3)月銷售額獎勵標準應定為22萬元.【解析】
(1)根據(jù)稱職的人數(shù)及其所占百分比求得總?cè)藬?shù),據(jù)此求得不稱職、基本稱職和優(yōu)秀的百分比,再求出優(yōu)秀的總?cè)藬?shù),從而得出銷售26萬元的人數(shù),據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于土地流轉(zhuǎn)協(xié)議
- 顱縫早閉病因介紹
- 醫(yī)患爭議調(diào)解協(xié)議書
- 2025就業(yè)協(xié)議樣本
- 河南省許昌市(2024年-2025年小學六年級語文)統(tǒng)編版質(zhì)量測試(下學期)試卷及答案
- 《電機技術(shù)應用》課件 3.1.2 直流電機電樞繞組
- (可研報告)天津東疆保稅區(qū)設(shè)立spv公司可行性報告
- (2024)紙塑復合袋生產(chǎn)建設(shè)項目可行性研究報告(一)
- (2024)觀光餐廳建設(shè)項目可行性研究報告(一)
- 2023年天津市濱海新區(qū)八所重點學校高考語文聯(lián)考試卷
- 園林工程智慧樹知到答案2024年浙江農(nóng)林大學
- 游泳社會指導專項理論知識題庫及參考答案
- 2025屆高考語文一輪總復習:120個文言實詞
- ICU常用的鎮(zhèn)靜鎮(zhèn)痛藥物特點和應用培訓課件
- 2024-2030年中國飛行時間(ToF)傳感器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 2024年新蘇教版科學六年級上冊全冊知識點
- 砼結(jié)構(gòu)構(gòu)件制造行業(yè)產(chǎn)業(yè)鏈協(xié)同與價值鏈優(yōu)化
- 人教版五年級數(shù)學上冊第四單元《可能性》全部集體備課教學設(shè)計
- 機械工業(yè)工程建設(shè)項目設(shè)計文件編制標準
- 《思想道德與法治》復習題(一)
- 《物聯(lián)網(wǎng)工程導論》課件 項目5 智慧小區(qū)系統(tǒng)集成架構(gòu)設(shè)計(6學時)
評論
0/150
提交評論