版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點(diǎn),則的取值范圍是()A. B.C. D.2.設(shè)集合,,若,則的取值范圍是()A. B. C. D.3.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.4.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.35.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.6.若復(fù)數(shù)是純虛數(shù),則()A.3 B.5 C. D.7.雙曲線的漸近線方程是()A. B. C. D.8.過橢圓的左焦點(diǎn)的直線過的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.9.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.10.若、滿足約束條件,則的最大值為()A. B. C. D.11.函數(shù)的大致圖象是()A. B.C. D.12.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項(xiàng)展開式中,x的系數(shù)為________.(用數(shù)值作答)14.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.15.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.16.已知,,,的夾角為30°,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當(dāng)時(shí),要使恒成立,求實(shí)數(shù)的取值范圍.18.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點(diǎn),求.19.(12分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.20.(12分)在開展學(xué)習(xí)強(qiáng)國(guó)的活動(dòng)中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個(gè)學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個(gè)學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.21.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)22.(10分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時(shí),解,當(dāng)k=-1時(shí),,可得,.故答案為:A.【點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.2、C【解析】
由得出,利用集合的包含關(guān)系可得出實(shí)數(shù)的取值范圍.【詳解】,且,,.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.4、C【解析】
先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).6、C【解析】
先由已知,求出,進(jìn)一步可得,再利用復(fù)數(shù)模的運(yùn)算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、復(fù)數(shù)模的運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.7、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡(jiǎn)單性質(zhì)的合理運(yùn)用.8、D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.9、B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.10、C【解析】
作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.12、C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、-40【解析】
由題意,可先由公式得出二項(xiàng)展開式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開式通項(xiàng)的公式,屬于基礎(chǔ)題.14、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時(shí)的,解關(guān)于的不等式,再取并集,即得?!驹斀狻坑深}意得,只要即可,,當(dāng)時(shí),令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時(shí),有最小值,,若恒成立,則,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。15、【解析】
根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無(wú)交點(diǎn),,得;又,過定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.16、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導(dǎo)函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對(duì)參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當(dāng)時(shí),,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當(dāng)時(shí),因?yàn)椋缓项}意.②當(dāng)時(shí),令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當(dāng)時(shí),,,所以,只需,所以,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,以及利用導(dǎo)數(shù)研究恒成立問題,屬綜合中檔題.18、(1),;(2).【解析】
(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標(biāo)方程;直接利用直線的傾斜角以及經(jīng)過的點(diǎn)求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達(dá)定理,根據(jù)為的中點(diǎn),解出即可.【詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標(biāo)方程為,直線經(jīng)過點(diǎn),且傾斜角為,直線的參數(shù)方程:(為參數(shù),).(2)設(shè)對(duì)應(yīng)的參數(shù)分別為,.將直線的參數(shù)方程代入并整理,得,,.又為的中點(diǎn),,,,,即,,,,即,.【點(diǎn)睛】本題考查了圓的參數(shù)方程與極坐標(biāo)方程之間的互化以及直線參數(shù)方程的應(yīng)用,考查了計(jì)算能力,屬于中檔題.19、(1)見解析(2)直線過定點(diǎn).【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,設(shè)出點(diǎn)坐標(biāo)并代入切線的方程,同理將點(diǎn)坐標(biāo)代入切線的方程,利用韋達(dá)定理求得線段中點(diǎn)的橫坐標(biāo),由此判斷出軸.(2)求得點(diǎn)的縱坐標(biāo),由此求得點(diǎn)坐標(biāo),求得直線的斜率,由此求得直線的方程,化簡(jiǎn)后可得直線過定點(diǎn).【詳解】(1)設(shè)切點(diǎn),,,∴切線的斜率為,切線:,設(shè),則有,化簡(jiǎn)得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點(diǎn).【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線過定點(diǎn)問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)28種;(2)分布見解析,.【解析】
(1)分這名女教師分別來(lái)自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個(gè)取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點(diǎn)睛】本題主要考查組合數(shù)與組合公式及離散型隨機(jī)變量的期望和方差,相對(duì)不難,注意運(yùn)算的準(zhǔn)確性.21、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)椋?,所以,所以,矛?所以不能同時(shí)滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因?yàn)椋?,?解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東酒店管理職業(yè)技術(shù)學(xué)院《客艙服務(wù)操作與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東建設(shè)職業(yè)技術(shù)學(xué)院《電子商務(wù)企業(yè)運(yùn)營(yíng)沙盤實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東海洋大學(xué)《證券與投資》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東東軟學(xué)院《大數(shù)據(jù)處理與智能決策》2023-2024學(xué)年第一學(xué)期期末試卷
- 《課件工傷保險(xiǎn)》課件
- SWOT分析培訓(xùn)課件
- 《經(jīng)濟(jì)型連鎖酒店》課件
- 贛州師范高等??茖W(xué)?!督逃龜?shù)據(jù)挖掘理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛東學(xué)院《生物工程進(jìn)展與創(chuàng)業(yè)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)科學(xué)上冊(cè)10.1.1身體降的標(biāo)志學(xué)案無(wú)答案牛津上海版
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末質(zhì)量檢測(cè)數(shù)學(xué)試題 附答案
- 2024年辦公樓衛(wèi)生管理制度模版(3篇)
- 船舶防火與滅火(課件)
- 保險(xiǎn)公司2024年工作總結(jié)(34篇)
- 七、監(jiān)理工作重點(diǎn)、難點(diǎn)分析及對(duì)策
- 2024年01月22503學(xué)前兒童健康教育活動(dòng)指導(dǎo)期末試題答案
- 面膜中藍(lán)銅肽經(jīng)皮滲透性和改善皮膚衰老作用研究
- 湖北省荊州市八縣市2023-2024學(xué)年高一上學(xué)期1月期末考試 化學(xué) 含解析
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項(xiàng)考試題庫(kù)-上(單選題)
- 《水文化概論》全套教學(xué)課件
- 期末測(cè)評(píng)(基礎(chǔ)卷二)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)人教版
評(píng)論
0/150
提交評(píng)論