版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第七 數(shù)值微分與數(shù)值積7‐1:已測得某地大氣壓強(qiáng)隨高度變化的一組數(shù)據(jù)高度0壓強(qiáng)kgf1000米處的大氣壓強(qiáng)變化率。注釋:已知函數(shù)點(diǎn)的值,求在某些點(diǎn)的導(dǎo)數(shù)bI[f]b
f(x)dxF(b)Ffxsinx,fxex2x 我們是否可以找簡單方法計(jì)算下列積分11 11 x , xe2xdx dx 01
x22 x(2x)2
dx??x12345y468‐yfx未知只知道部分對應(yīng)點(diǎn)x12345y468注釋:通過函數(shù)點(diǎn)的值,求某個(gè)區(qū)間上的積分積分=已知數(shù)據(jù)點(diǎn)上函數(shù)值的線性§7.1x""x""y""BfABfAC
x各種一階差商f(x)f(xh)fhf(x)f(x)f(xhf(x)f(xh)f
向前差商公式D向后差商公式D中心差商公式Dff(xh)f(x)hf(x)23f(x)f(x)f(xh)f(x)hf(x)23f(x)f(x)向前:fxfxhfx)hf(
向后:fx
f(x)f(xh)
f(
f(xh)f(xh)
f( 中心:f 二階差商f''(x)f(xh)2f(x)f (x)f(xh)2f(x)f(xh)2f(4)注意例設(shè)f(x=ex分別取步長h102103,104106用向前差商公式和中心差商公式計(jì)算f(1.15)hxy向前差商中心差商上表結(jié)果說明當(dāng)步長由102縮小到104時(shí),誤差在縮小.進(jìn)而縮小到106時(shí),由于有效數(shù)字丟失,誤差反而增大。當(dāng)步長不太大時(shí),中心差商公式精度優(yōu)于向前差商公式。以插值多項(xiàng)式的導(dǎo)數(shù)作為函數(shù)導(dǎo)數(shù)的近似,f(xi)n(xiBfABfAC
x插值函數(shù)的誤差公式f(n1)R(x)f(x)n(x) (n1)!插值型微分的誤差公R(x)f(x)(x)
(x)
f(n1)()
(n1)
對任意x[a,] 因(依賴于x)未知,故上式很難估計(jì)誤差,但若只求某個(gè)節(jié)點(diǎn)上的導(dǎo)數(shù)值,誤差可估計(jì).因此,插值型求導(dǎo)公式通常用于求節(jié)點(diǎn)處導(dǎo)數(shù)的近似值。
R(
)f(
)n(xi)
(n
(xixjji1等距節(jié)點(diǎn)常用公式1.兩點(diǎn)公1
x0,x1x0f(x)
f(
)(xx1
f(x
(xx0 (
x1
(
x0f(x)L(x)
f(x1)f(x0
i R(x)f(x)L(x)f(0)(xx)hf(
R(x)f(x)L(x)f(1)(xx)hf(
ff(x)f(x1)f(x0)0hR(x)hf(1020f(x)f(x1)f(x0)1hR(x)hf( 21,(a, 2.三點(diǎn)公
xix0
(i二次插值公f(x)f(x
(xx1)(x
f(x
(xx0)(x
f(x
(xx0)(x0
x)(xx
1
x)(xx
2
x)(xx
f(x)(xx1)(xx2)f(x)(xx0)(xx2)f(x)(xx0)(x
插值公式求L(x)f(x)2x
f(x
2x
f(x)2x
因此f(x)L(x)f(x)2x0x1
f(x)2x0x0
f(x)2x0x0
f(x0
h2f
f(x2)
3f(x0)4f(x1)
f(x2f(x)L(x)f(x)2x1x1
f(x)2x1
f(x)2x1x0 hf(x)
f(x)
f(x2)f(x0
f(x)L(x)
f(x)2x2x1
f(x)2x2x0
f(x)2x2x0
f(x)
f(x)
f(x)
f(x0)4f(x1)3f
f(x f(xf(x)
3f(xi)4f(xi1)f(xi2 i f(xi)
f(xi2)4f(xi1)3f(xix i插值公式二次求導(dǎo)L(x)f(x f(x)2f(x
f(x)f(x0)2f(x1)f(x2 i0,1, xix0
(if(xf(x)13f(x)4f(x)f(x0012f(x)1f(x)f(x102f(x)1f(x)4f(x)3f(x2012(x0) (002R(x)2
f(3)( 2R(x)
f(3)( i(a,
(i0,1,ff(x)(x)1f(x)2f(x)f(xi2i012設(shè)Sx)fx)的三次樣條插值函數(shù),由三次樣條f(x)S(且有誤差估
xR(k)(x)f(k)(x)S(k)(x)O(h4k (kf(x)f(xh)f(f(x)hf(x)f(xh
f(x)f(x)13f(x)4f(x)f(x0012f(x)1f(x)f(x102f(x)1f(x)4f(x)3f(x2012f''(x)f''(x)f(xh)2f(x)f(x§7.2Newton-Cotesfx)的原函數(shù)不存在或計(jì)算繁瑣,或fx)只有b離散數(shù)據(jù)點(diǎn),求I(f) f(x)dx的近似數(shù)值fn(x)bI(fn) fn(x)dx作為If)bEn(f) f(x)fn(x) n nbI(f)
f(x)dx
Ln(x)dxlk(x)dxf(xkk 插值型求積公式b
I(f)
f(x)dxAkf(xkkkAkk
lx)dx(k01n)
f無關(guān),稱為求積系求積公式的截?cái)嗾`
f(n1)(R(f)R(f)f(x)dxL(x)dx (
(n
xa (k0,1,",n),hbk b
x Ak
lk(x)dx
j
xxjxxa
j t
(1)nk(b
kk
hdt
k!(nk
0(tjkk
(1)nkjnk!(nk)!nn
(tnn
jk(ba)Ckb
n(I(f)
f(x)dx(ba)k
f(xkC(n)
(1)nk k!(nk)!n
(tjjbn階N-C公式的截?cái)郻Rn(f)
f(n1)((n
(xxj)dxnn
nh(n1)!nh
f(n1)()(tnnn12Cn12C(nk12123879038790n 梯形公I(xiàn)(f)baI(f)baf(a)4f(ab)f62I(f)f(x)dxbaf(a)fba2梯形公式
f(x)dxhf(x)f(x)b 2b
Simpson公式
f(x)dxhf(x)
4f(x)f(xb 3b
Simpsons3公式8bf(x)dx3hf(x)3f(x)3f(x)f(xb 8
衡量插值型求積公式的精度,用多項(xiàng)式次數(shù)作標(biāo)(一)求定義7.1
f(x)dxAkf(xkbnkbnbn f(x)dxAkf(xkbnk存在某個(gè)m1次多項(xiàng)式Pm1x),bb
AkPm1(xknkn則稱該求積公式具有m次代數(shù)精確度結(jié)論
f(x)dxAkf(xkbnkbn
具有m次代數(shù)精度n bxldxAxn
(l0,1,"ma k m
m
dx
k
Akxk由n次插值導(dǎo)出的求積公式至少具有n次代數(shù)精度bRn(f)b
f(x)dx
nkn
Akf(xk)
b(n n1(bnR(xl)n
(l0,1,",結(jié)論2n階NC公式至少具有2n1次代數(shù)精度 設(shè)2n1P2n1x
x2n1
"ax
P(2n1)
bb bxanh
nn
(
h2n
-
njn
(t+n-j)
h2n
-
t(t
1)(t222)"(t
n2)對稱區(qū)間上奇函數(shù)積分為 證bf(x)dxb
ba
f(a)4f(ab)fa
ba a 記I(f
f(
I(f)
f(a)4f )f I(x)1(b2
I~
ba(141)ba6ba(a2a2bb)1(b2I I(x2)1(b3a3)
ba
ab
2 I(x)
a
)b
(ba)I(x3)1(b4
baa34(ab)3b3
4a4)4 I(x4
I(x4)1(b5
4ba
44(ab)4b4I(x5
ba(5a44a3b6a2b24ab35b4) 例:確定系數(shù)使下列求積公式代數(shù)精確度盡可11
f(x)dx
f(1)
f(0)
ffx1xx2時(shí)公式等號成立 A1A0A1
A1
A0 A
A f(x)dx
f(1)
f(0)
f
11
fx1xx2精確成立fx)x3時(shí),
A0 A當(dāng)f(x)x4 左邊2右邊2
定理7.2fxC(2abbb
f(x)dx
f1b證明:R(f1b
f(x)(xa)(x2bf(b
(xa)(xf()(ba)3 7.3fxC(4ab則SimpsonbR(f) f(x)dxb
baf(a)4f(ab)f(b)
(b 證明
f(4)() f(4)( (a, Simpson公式的代數(shù)精度為3尋找fx)插值多項(xiàng)式使得在a,abb點(diǎn)的值等于函數(shù)2值且是三次多項(xiàng)式。取fx)的三次Hermite插值多項(xiàng)式H3x)H3(a)f H(ab)f(a H(ab)f(a baf(a)4f(ab)f baH(a)4H(ab)H(b) bH( f(4)( af(x)H3(x) (xa)(x
)2(x bR(f) f(x)dxb
baf(a)4f(ab)f(b)
f(4)(
a f(x)dx
H3(
(xa)(x
)2(x2f(4)(
(xa)(x
a
)2(xb bxabtb f(4)( ba
)1(t1)t(tf(4)((b)5f(4)((b)522253(b
)
f(4)(
f(4 (a f(n1) f(n1)(R(f)ban1(x(n為奇數(shù)n(n(n2(n2)! ba(xa2(x(n為偶數(shù)其 n1(x)(xx0)(xx1)"(xxn (a, xka(k用 1",xn
n(k0,1,",
xn1II(f)baf(x)dx(ba)bkf(xk)En(fknb bl(
(k0,1,", ba 次數(shù);但是高次插值有Runge現(xiàn)象,不一定能提復(fù)復(fù)化求積基本思用分段低次多項(xiàng)式近似被積函數(shù)求積分近似復(fù)化梯形fx) a
(k0,1,",
yhbyhbnnbf(x)dxb
xk
f(
hf(x)f( k xkk
k0
kf(a)f(b)2
f(xk k bbf(x)dxhf(a)a2f(b)f(x)kkn如果fxC(2)a其截?cái)嗾`差RR(f) (ba)f(2T(a, h
RT(f)
f(x)dx
f(a)f(b)n2 kn2
f(xkh h
f
)]
h2(ba)
f(
(x, k
k
kh2
(ba)f(
(a,fhbn分段Simpson公hbny hx1
h
n
hba
a
(k0,1,",x2x2k
f(x)dx2h[f( 2k
)4f(
2k1)f(x2k44444 44444mbf(x)dxm
f(x)dx2hf
)4f(x )f(x
m hf(a)f(b) m 3 f(x2k f(x2k1 k k baf(x)dxh3mf(a)f(b)kf()kmf(2k)RR(f)sbh (a, h
Rs(f)
f(x)dx
3f(a)f(b)
f(
)4f(x2k1m m
5
kkf(4)(k
k f(4)()
b
k
b
kk
h k(x2k2,x2k
(a,
0
x21問積分區(qū)間要等分為多少份才能保證計(jì)算結(jié)14位有效數(shù)字解:0.3e
x0,1
1ex2 0 11042
f(x)ex
f(x)2xef(x)(4x22)ex22f(4)(x)(16x448x212)e
f(x)(8x312x)e
Rs(f
f(4)(
1800
f(4)(
104n421049
n
n8即可1ex2dx0
1 (14e1 38
e1)f(x)(4x22)e
f(x)(8x312x)ex2
fRT(f)2
f(
120 h21104 n n7.3.3逐次分半算法復(fù)化梯形公式誤差h h (f)
f
[f()
k
k
kbb
f(x)dx
h[22
(b)
注意到區(qū)間再次對1h RT(f) [f(b)f(a)]4RT(f2 122 I13I13TnI kks (f)sn
m590km5
f(4)(
h4
k
(4)(kbh4kb180
f(4)(x)dx
(f(b)f(a))注意到區(qū)間再次對f(b)f(a)h (f)2
(fSnS I1(I1(SnI 通常采取將區(qū)間不斷對分的方法即取n取n2m(m0,1,2,"), ba
xa (k0,1,",2m 2m m m
f(a)f(b)2
f(x
(m0,1,2," 2
k 12mf(a(2k1)hm m(m1,2,"k即Tm是前次計(jì)算的近似值Tm1的一半與新分點(diǎn)處函數(shù)2 2m之和乘以新步長h之和m
Tm稱為梯形值序列IR(fIR(f )13)Sm2 Sm2 3f(a)f(b)f(a2kh)mf(a(2khm(m1,2,"2
fxC(4ab2IS R(f,2
)1(
Sm122S S 例:計(jì)算橢 4
的周長,使結(jié)果具有5位有效數(shù)解x2cosy lds4 4sin2cos2d4
3sin2L
則 0
2
|e(I) 813sin213sin2T(12) T1Tf
)
1|TT|
T1T f(3)
8f(8 1|TT| T1T(f()f(3)f(5)f(7)) 13|T4T8| 1
184T842.42211l4T820203sin2 (f(0)4f()
f( ))2. (f(0)4f(
)2f()4f(3)f())
1|SS|
[f(0)4f
)2f )4f( 2f(4
)4f(5)2f(3)4f(7)
f(
1|SS
1104 l4I42.42211梯形公式算法輸入ab,f取m1,hba Th[f(a)f 取F0,對k1,22m1,Ff(a(2k1)hT1T 5若|TT|輸出I停止m1h TT0轉(zhuǎn)Simpson公式算法輸入ab,fx取Ff(a)f(b),Ff(ab), ba(F4F m hb4
3F303
k1,2,"
m1,
f(a(2k1)h)Sh(F2F4F |SS|15ISm1h F2F3 S 轉(zhuǎn) 計(jì)算圓周率的一種算法n nsinn 7∵sinxx1x31x51x 7
(1
(1
(1)6 7 逐次分半時(shí)粗細(xì)近似值的組合 1 2 2 (22
1(1615215
(1)n2
1(42nn3(232
1(1615215
(1)nnn(1)1 2n (2)1 2n 6II(h)a
a
"ahPk 其中01P2" II(h)ah2ah4ah6 問題O(hp1)提高到O(hp2)?
II(h)ah2ah4ah6 II(h/2) 4a216a364
則(2)4 3I[4I(h/2)I(h)]3a24
15a3h6I4I(h/2)I(h)c
ch6 I(h
(h
ch6" 22m (h/2)
2(m1)似Im(h) 22m 則IIm(h) 1對 II(h)a1
ahP2"a 1II(h)aP1 1
aP2
"aPk P1IP1I2k3k2a2
P1)hP2a
P1
"a
P1)hPk(I(h)P1I(h))I (1P1)
a
"a
"(1P1
kI
f( 記 T(k)I(bab
(k0,1,2," 由Euler-MaclaurinIT(k)a(bIT(k)a(ba)2a(ba)4"a(ba)2i012iT(k) 4
則 R(f,T(k))O((ba)4 T(kT(k) m m4mT(k1)T(km4mRf
(k))mm
)2m2m上式Tkm
(m12稱為Romberg求積公式m以T (m0,1,2,")作為積分近似值,稱為Romberg方法m m停止準(zhǔn)則:T(0)T( m 逐行自左向右計(jì)分別將求積區(qū)間2k等分(逐次對分 T(k
42T(k1)
43T(k1) T01T010 T
T(
42
43 T24T240
T51T5
T632T637 70
818
929
(k)是Simpson序列 2kmmmRomberg方法產(chǎn)生的序列(0當(dāng)m時(shí)收斂于Ifm且收斂速度快于復(fù)化Simpson方 一般公 I(f)b
f(x)dxAkf(xkkk求積系A(chǔ)kk
lx)dx(k01n)與f等距節(jié)點(diǎn):N-C公 逐次分半梯形,Simpson 啟示:在節(jié)點(diǎn)數(shù)n固定時(shí)適當(dāng)選取xk}和求積系數(shù)Ak可以提高數(shù)值積分方法的近似程度 基本思想節(jié)點(diǎn)數(shù)n固定適當(dāng)選取xk}和求積系數(shù)Ak使求積公式
(x)f(x)dxbnkbn
f(xk具有最高的代數(shù)精確度其中x0為權(quán)函數(shù),求積系數(shù)Ak(k01n)與f無關(guān)。 n個(gè)節(jié)點(diǎn)的求積公式最高代數(shù)精確度是多大怎樣選取節(jié)點(diǎn)與求積系數(shù)使求積公式具有最高的代數(shù)精確度?bn(一)Gaussbn
a(x)f(x)dx
k
精度,則節(jié)點(diǎn)xk}和求積系數(shù)Ak}應(yīng)滿足方程A1A2"AnAxA "A A
A
"Axm b b
(x)xldx
(l0,1,…,此2n個(gè)未知數(shù)的m+1個(gè)方程可證,當(dāng)m12n時(shí)有解設(shè) (x)(x
x)2(xx)2"(x
x
b a(x)P2n(x)dxbn AkP2n(xk)k所以n2n定義7.2如果一組節(jié)點(diǎn)x1x2,xnab能使求積公 a(x)f(x)dxAkf(xkk具有2n1次代數(shù)精度則稱這組節(jié)點(diǎn)為Gauss點(diǎn)上述求積公式為帶權(quán)函數(shù)(x)的Gauss型求積公式II1f(x)dxf(1)f(133I1f(x)dx5f935)89f(0)59f35)兩 公式三 公式例11f(x)dxaf 0.6)bf(0)cf 11中的待定系數(shù)ab和c使其代數(shù)精度盡量高,并,1解:If
f(x)dx,I(f)af 0.6)bf(0)cf 取fx1x,x2使I(fI(f1I(x)
1dx I(1)ab111xdx I(x) 0.6a11
I(x2)
x2dx2 I(x2)0.6a0.6c要使公式具有盡可能高的代數(shù)精度ababc
ac9 a
c 2
b0.6a0.6c ac5b8時(shí)求積公式的代數(shù)精度最高 1f(x)dx5f90.6)8f(0)5f990.6I(x3)
x3dx
5
0.6)3
I(x I(x4)
x4dx5
~(x4)
59
0.62)0.40.60.6 I(x)1x
I(x) 0.6)5 0.6
(6II(x6)1x6dx ~x)5(0.630.63)2.16(6I 4例: 求積公式計(jì)算4
xe2xdx解:通過坐標(biāo)變換化為[-1,11令x2t14I4
xe2xdx
(4t4)e4t
f(t(4t4)e4t4兩 公式
4
4I1f(t)dtf
)f
)(4
3(4 3I1f(x)I1f(x)dxf(1)f(133
三 公式
4xe2xdx0I
f(t)dt5f 0.6)8f(0)5f 115(49
0.6)e4
8(4)e45(4
II1f(x)dx5f953)8f(0)5f9935)5 )8 )5 注釋:Gauss型求積公式由代數(shù)精確度描述 最高階,達(dá)到2n-求積節(jié)點(diǎn)和系數(shù)有特殊的選取 或者(二)Gauss 確定x1,x2,A1,A2,使得求積公1
f(x)dxA1f(x1)
f(x2具有最高代數(shù)精確度。解:Gauss求積公式可以達(dá)到3次代數(shù)精確度.取fx)為任意三次多項(xiàng)式,利用多項(xiàng)式除法,fx)可表成如下形式f(x)(a0a1x)(xx1)(xx2)(b0
f(x)dx
a1x)(xx1)(xx2)dx
A1f(x1)A2f(x21(011)如果求積公式具有3次代數(shù)精確度,則11(b0b1x)dxA1(b0b1x1)A2(b0b1x21 1(a0a1x)(xx1)(xx2)dx對任意實(shí)數(shù)a0,a1都成立1 (xx)(xx)dx1 x(xx1)(xx2)dx即 22xx 22
(x1x2)3由此解出x= 13 再取兩個(gè)特殊的f,求得A1和A2:比如取f11f21 dx2A1
331- 33
xdx0 其解為A1A21。故所求求積公式為1f(x)dxf1f13333
例如f(x)xx2xx 則f(x)dx
1x-x2x-
2dx11而
f(x1)f(x2)b求積公式b
(x)f(x)dx
nkn
fxk)nn(x)(xxknk與任意至多n1次多項(xiàng)式qx)在[ab]上關(guān)于權(quán)函數(shù)x)正交即b(x)q(
(x)dx 若xk}為Gaussba(x)f(x)dxb
nkn
Akf(xk為帶權(quán)函數(shù)x)的Gauss型求積公式n則對任意至多2n1Px)nba(x)P(x)dxb
k
AkP(xk若qx)n1次多項(xiàng)式bn則qx)n(x)至多2n1次多項(xiàng)式bn
(x)q(x)n(x)dx
k
Akq(
)n(
)
(x)(xxkkf(xxl(l01n1)A1A2"AnAxAx"A
(x)xldxbab
lnAnA
A
A
"
Axn1
b
b(x)xldx
n
(k1,2,",ka(x)f(x)dxk
k
Akf(
代數(shù)精度至少為n設(shè)fx)為任意次數(shù)不超過2n1則存在次數(shù)不超過的n1多項(xiàng)式qx),r(x)使f(x)q(x)n(x)r(bb(x)f(x)dxb
(x)q(
(x)dx
b(x)r(a Akr(xk)Akf(xk bkb
k即求積公式
(x)f(x)dxk
Akfxk)對次數(shù)不超2n1次的多項(xiàng)式精確成 求積公式
(x)f(x)dx
k
f(
)為Gauss公式,{xk}是Gauss點(diǎn) 證回定理6.3設(shè)nx)(n0,12是最高次項(xiàng)系數(shù)不為零的n條件:對任意n1次多項(xiàng)式qx都有bb
(x)q(
(x)dx (n1,2,"求求Gauss knk[ab]上關(guān)于權(quán)函數(shù)x)的正交項(xiàng)式系中的n次多項(xiàng)式的n個(gè)實(shí)根A b(x)l( A b(
n(
(xx)(x因?yàn)閘kx)
nnj
xxxkx
是n1次多項(xiàng)式,所jk b
n( a(x)lk(x)dx
(
(xx)(x)dx
Allk(xl)注:
bk(x)l2(bk
lk l2(k
xxj
jj
xkxjnn b(x)l2(x)dx a
l
Al2(x) 結(jié)論f(x)C(2n)a,b,則(a, 使bR(f)b
(x)f(x)dx
nkn
Akf(xkf(2n)((2n)!
b(x)2(x 證明:構(gòu)造過節(jié)點(diǎn)x1,x2xn上f(x)的2n-1階f2n( (x) (a, R(f)
(x)f(x)dxk
Akf(xk
a(x)f(x)dx
k
AkH(xk b(x)f(x)dxb(x)H(
f(2n)(x)bb
(x)2(nf(2n)()bn
n(n
2(
(a, fxC(ab),Gaussn時(shí)bb
(x)l(x)dxbkabk
kbakb
nkknk
(nnkn
f(xk)
nkn
Ak
(x
nkkknkk
f(x)f(x k
Akk1kkk
f(xk)
(xbb
(x)dx1k
f(xk)
(x
[1,1上帶權(quán)函數(shù)x1Gauss11
f(x)dxAkf(xknnGauss點(diǎn)xk}n次Legendre多項(xiàng)nPx) x21)nn個(gè)零點(diǎn)n 2nn!dxn 求積系
1,2,",n) (1x2)P
(2n
b求積分b
f(
做變
xbatba 11b f(x)dxb
b2
f(batba kbak
Af(ba
ba k
II1f(x)dxf(1)f(133I f(x)dx5f135)89f(0)59f935)11的Gauss型求積公1f(x1xndxAkf(xkkGauss點(diǎn) cos2k1(k1,2,",n)為n次Chebyshev多項(xiàng)kTnxcos(narccosx)n個(gè)零
(k1,2,", f(
2k1x1x
dx
nkn
f(cos 插值余:R(f) f插值余
[0)上帶權(quán)函數(shù)x)ex的Gauss型求積公 f(x)dxAkf(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東警官學(xué)院《生物質(zhì)能轉(zhuǎn)化原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門中醫(yī)藥職業(yè)學(xué)院《實(shí)驗(yàn)安全與現(xiàn)場急救》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《廣告設(shè)計(jì)與策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《英語綜合技能2》2023-2024學(xué)年第一學(xué)期期末試卷
- 《危害申報(bào)管理》課件
- 感恩企業(yè)培訓(xùn)課件
- 《化學(xué)動(dòng)力學(xué)的任務(wù)》課件
- 共青科技職業(yè)學(xué)院《工業(yè)機(jī)器人應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《中國通史現(xiàn)代》2023-2024學(xué)年第一學(xué)期期末試卷
- 皮帶系統(tǒng)安全培訓(xùn)課件
- 2024年加油站的年度工作總結(jié)范文(2篇)
- 甲醇制氫生產(chǎn)裝置計(jì)算書
- T-JSREA 32-2024 電化學(xué)儲能電站消防驗(yàn)收規(guī)范
- 福建省晉江市松熹中學(xué)2024-2025學(xué)年七年級上學(xué)期第二次月考語文試題
- 【MOOC】隧道工程-中南大學(xué) 中國大學(xué)慕課MOOC答案
- ISO27001信息安全管理體系培訓(xùn)資料
- 紅色經(jīng)典影片與近現(xiàn)代中國發(fā)展學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 劇作策劃與管理智慧樹知到期末考試答案2024年
- 鐵路基礎(chǔ)知識考試題庫500題(單選、多選、判斷)
- 110kV變壓器保護(hù)整定實(shí)例
- 銷售顧問初級認(rèn)證筆試題
評論
0/150
提交評論